已知函數(shù)在點處的切線方程為
(I)求,的值;
(II)對函數(shù)定義域內(nèi)的任一個實數(shù),恒成立,求實數(shù)的取值范圍.

(I)2,-1(II)

解析試題分析:(Ⅰ)由
而點在直線,又直線的斜率為
故有
(Ⅱ)由(Ⅰ)得


,故在區(qū)間上是減函數(shù),故當時,,當時,
從而當時,,當時,
是增函數(shù),在是減函數(shù),故
要使成立,只需
的取值范圍是。                                 
考點:導數(shù)的幾何意義及函數(shù)最值
點評:直線與函數(shù)曲線相切時,常從切點入手尋找關系式,充分利用導數(shù)的幾何意義:函數(shù)在某一點處的導數(shù)值等于該點處的切線斜率來實現(xiàn)數(shù)與形的結合,第二問中將不等式恒成立問題常轉化為求函數(shù)最值問題,進而借助于導數(shù)工具求解

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù)同時滿足以下條件:①函數(shù)上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③函數(shù)處的切線與直線垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設,若存在使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,直線與函數(shù)的圖像都相切,且與函數(shù)的圖像的切點的橫坐標為1.  
(1)求直線的方程及的值;
(2)若(其中的導函數(shù)),求函數(shù)的最大值;
(3)當時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處取得極值 .
(I)求實 數(shù)a和b.         (Ⅱ)求f(x)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處有極大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函 數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)試判斷函數(shù)的單調(diào)性,并說明理由;
(Ⅱ)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù))是定義在上的奇函數(shù),且時,函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若),不等式恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

同步練習冊答案