已知,直線與函數(shù)的圖像都相切,且與函數(shù)的圖像的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線的方程及的值;
(2)若(其中是的導(dǎo)函數(shù)),求函數(shù)的最大值;
(3)當(dāng)時(shí),求證:.
(1),m=-2
(2)取得最大值
(3)由(Ⅱ)知:當(dāng)時(shí),,即,結(jié)合單調(diào)性來證明。
解析試題分析:解:(Ⅰ)依題意知:直線是函數(shù)在點(diǎn)處的切線,故其斜率
,所以直線的方程為.又因?yàn)橹本與的圖像相切,所以由
,
得(不合題意,舍去); . 4分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/eb/0/kzihz4.png" style="vertical-align:middle;" />(),所以
.當(dāng)時(shí),;當(dāng)時(shí),.
因此,在上單調(diào)遞增,在上單調(diào)遞減.
因此,當(dāng)時(shí),取得最大值; . 8分
(Ⅲ)當(dāng)時(shí),.由(Ⅱ)知:當(dāng)時(shí),,即.因此,有. . 12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了函數(shù)的單調(diào)性以及不等式的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)對(duì)任意滿足,,若當(dāng)時(shí),(且),且.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域是,是的導(dǎo)函數(shù),且在
內(nèi)恒成立.
求函數(shù)的單調(diào)區(qū)間;
若,求的取值范圍;
(3) 設(shè)是的零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)處的切線方程為.
(I)求,的值;
(II)對(duì)函數(shù)定義域內(nèi)的任一個(gè)實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=,其中a≠0.
(1)若對(duì)一切x∈R,≥1恒成立,求a的取值集合.
(2)在函數(shù)的圖像上取定兩點(diǎn),,記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com