分析 (1)設復數(shù)z=a+bi(a,b∈R),可得$\overline{z}$=a-bi,利用復數(shù)的運算法則、模的計算公式即可得出.
(2)利用復數(shù)的運算法則、實部的定義即可得出.
解答 解:(1)設復數(shù)z=a+bi(a,b∈R),∴$\overline{z}$=a-bi,
∴$z+\overline z=2a=6$,∴a=3.
∴$|z|=\sqrt{9+{b^2}}=5$⇒b=±4,即復數(shù)z的虛部為±4.
(2)當b=4時,$\frac{z}{1-i}=\frac{3+4i}{1-i}$=$\frac{{({3+4i})({1+i})}}{2}=\frac{7i-1}{2}$=$-\frac{1}{2}+\frac{7}{2}i$,其實部為$-\frac{1}{2}$.
當b=-4時,$\frac{z}{1-i}=\frac{3-4i}{1-i}$=$\frac{{({3-4i})({1+i})}}{2}=\frac{7-i}{2}$=$\frac{7}{2}-\frac{1}{2}i$,其實部為$\frac{7}{2}$.
點評 本題考查了復數(shù)的運算法則、復數(shù)相等、模的計算公式、實部的定義,考查了推理能力與計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{1}{3}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com