分析 (1)根據(jù)0.01+0.02+a+0.04=0.1,求出a的值即可;
(2)根據(jù)中位數(shù)的左邊和右邊的直方圖的面積相等可求中位數(shù);計算每個小矩形的面積乘以小矩形底邊中點的橫坐標之和可得平均數(shù).
(3)根據(jù)頻數(shù)=頻率×樣本容量,可以求出身高介于140~150的學(xué)生人數(shù)和身高介于150~160的學(xué)生人數(shù),進而由組合數(shù)公式,可求出從身高在140-160的學(xué)生中隨機抽取2名學(xué)生的事件個數(shù)及至少有一個人身高在150-160之間的事件個數(shù),代入古典概型概率公式,可得答案.
解答 解:(1)a=0.1-0.01-0.02-0.04=0.03;
(2)中位數(shù)的左邊和右邊的直方圖的面積相等,由此可以估計中位數(shù)的值,∵0.1+0.3+0.04×2.5=0.5
所以中位數(shù)的估計值為162.5.
平均數(shù)的估計值等于頻率分布直方圖中每個小矩形的面積乘以小矩形底邊中點的橫坐標之和.
則平均數(shù)的估計值為145×0.1+155×0.3+165×0.4+175×0.2=162,
(3)這20名學(xué)生中,身高在140-150之間的有2個,分別為A,B,身高在150-160之間的有6人,
從這8人中任選2個,有${C}_{8}^{2}$=28種選法,
兩個身高都在140---150之間的選法有1種選法,
所以至少有一個人在150-160之間的選法有28-1=27,
故至少有一人的身高在150-160之間的概率為$\frac{27}{28}$.
點評 本題考查了利用頻率分布直方圖求樣本的中位數(shù)、平均數(shù),考查了古典概型的概率計算,解題的關(guān)鍵是讀懂頻率分布直方圖的數(shù)據(jù).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $-\sqrt{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
女性用戶 | 男性用戶 | 合計 | |
“認可”手機 | 140 | 180 | 320 |
“不認可”手機 | 60 | 120 | 180 |
合計 | 200 | 300 | 500 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,f(x)≤f(x0) | B. | ?x∈R,f(x)≥f(x0) | C. | ?x∈R,f(x)≤f(x0) | D. | ?x∈R,f(x)≥f(x0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 先把各點的橫坐標縮短到原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{6}$個單位 | |
B. | 先把各點的橫坐標縮短到原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{12}$個單位 | |
C. | 先把各點的橫坐標伸長到原來的2倍,再向左平移$\frac{π}{6}$個單位 | |
D. | 先把各點的橫坐標伸長到原來的2倍,再向右平移$\frac{π}{12}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com