2.設(shè)函數(shù)f(x)=ex-|ln(-x)|的兩個(gè)零點(diǎn)為x1,x2,則( 。
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

分析 作出y=|ln(-x)|和y=ex在R上的圖象,可知恰有兩個(gè)交點(diǎn),設(shè)零點(diǎn)為x1,x2,再結(jié)合零點(diǎn)存在定理,可得結(jié)論

解答 解:令f(x)=0,則|ln(-x)|=ex,
作出y=|ln(-x)|和y=ex在R上的圖象,

可知恰有兩個(gè)交點(diǎn),設(shè)零點(diǎn)為x1,x2且|ln(-x1)|<|ln(-x2)|,x1<-1,x2>-1,
故有$\frac{1}{{x}_{1}}$>x2,即x1x2<1.
又由x1x2>0.
故0<x1x2<1
故選:D

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,正確作出函數(shù)圖象是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合P={1,2,3,4},Q={x||x|≤3,x∈R},則P∩Q等于(  )
A.{1}B.{1,2,3}
C.{3,4}D.{-3,-2,-1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,平面PAD⊥平面ABCD,四邊形ABCD為正方形,∠PAD=90°,且PA=AD=2,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}各項(xiàng)均為正數(shù),a2=2a1=2,且$\frac{{a}_{n+3}}{{a}_{n+2}}$=$\frac{{a}_{n+1}}{{a}_{n}}$對(duì)?n∈N*恒成立,記數(shù)列{an}的前n項(xiàng)和為Sn
(1)證明:數(shù)列{a2n-1+a2n}為等比數(shù)列;
(2)若存在正實(shí)數(shù)t,使得數(shù)列{Sn+t}為等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知命題p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,命題q:橢圓$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦點(diǎn)在x軸上.若命題p∨q為真命題,求實(shí)數(shù)m的取值范圍(-$\sqrt{6}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12,其左焦點(diǎn)F在直線l上.
(1)若直線l與橢圓C交于A,B兩點(diǎn),求|FA|•|FB|的值;
(2)求橢圓C的內(nèi)接矩形周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}中,a1=1,a2=3,對(duì)任意n∈N*,an+2≤an+3•2n,an+1≥2an+1恒成立,則數(shù)列{an}的前n項(xiàng)和Sn=2n+1-n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過雙曲線上任意一點(diǎn)P分別作斜率為-$\frac{a}$和$\frac{a}$的兩條直線l1和l2,設(shè)直線l1與x軸、y軸所圍成的三角形的面積為S,直線l2與x軸、y軸所圍成的三角形的面積為T,則S•T的值為$\frac{{a}^{2}^{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱臺(tái)ABCD-A1B1C1D1中,四邊形ABCD是菱形,AB=2A1B1,AA1⊥平面ABCD.
(1)求證:BD⊥C1C;
(2)求證:C1C∥平面A1BD.

查看答案和解析>>

同步練習(xí)冊(cè)答案