雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的兩個焦點為F1,F(xiàn)2,若P為其圖象上一點,且|PF1|=3|PF2|,則該雙曲線離心率的取值范圍為( 。
A、(1,2]
B、(1,2)
C、(2,+∞)
D、[2,+∞)
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)雙曲線定義可知|PF1|-|PF2|=2a,進(jìn)而根據(jù)|PF1|=3|PF2|,求得a=|PF2|,同時利用三角形中兩邊之和大于第三邊的性質(zhì),推斷出,|F1F2|<|PF1|+|PF2|,進(jìn)而求得a和c的不等式關(guān)系,分析當(dāng)p為雙曲線頂點時,e=2且雙曲線離心率大于1,最后綜合答案可得.
解答: 解:根據(jù)雙曲線定義可知|PF1|-|PF2|=2a,
即3|PF2|-|PF2|=2a,
∴a=|PF2|,|PF1|=3a,
在△PF1F2中,|F1F2|<|PF1|+|PF2|,
2c<4|PF2|,c<2|PF2|=2a,
c
a
<2,
當(dāng)P為雙曲線頂點時,
c
a
=2,
又∵雙曲線e>1,
∴1<e≤2
故選:A.
點評:本題主要考查了雙曲線的定義和簡單性質(zhì),三角形邊與邊之間的關(guān)系.解題一定要注意點P在橢圓頂點位置時的情況,以免遺漏答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

第一屆全國青年運(yùn)動會將于2015年10月18日在福州舉行.主辦方在建造游泳池時需建造附屬室外蓄水池,蓄水池要求容積為300m3,深為3m.如果池底每平方米的造價為120元,池壁每平方米的造價為100元,那么怎樣設(shè)計水池的底面,才能使蓄水池總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,m},B={x|0<x<2},若A∩B={1,m},則m的取值范圍是( 。
A、(0,1)
B、(1,2)
C、(0,1)∪(1,2)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0),拋物線C2:x2+by=b2
(1)若C2經(jīng)過C1的兩個焦點,求C1的離心率;
(2)設(shè)A(0,b),Q(3
3
5
4
b),又M,N為C1與C2不在y軸上的兩個交點,若△AMN的垂心為B(0,
3
4
b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(-5,0),N(5,0)是平面上的兩點,若曲線C上至少存在一點P,使|PM|=|PN|+6,則稱曲線C為“黃金曲線”.下列五條曲線:
y2
16
-
x2
9
=1;      
x2
4
+
y2
9
=1;        
x2
4
-
y2
9
=1;
④y2=4x;         
⑤x2+y2-2x-3=0
其中為“黃金曲線”的是
 
.(寫出所有“黃金曲線”的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2+nx+k的圖象過點 P(0,3),且在點M(1,f(1))處的切線方程為6x-y=0.(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若不等式f(x)≤x3+lnx+c有解,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U為R,集合A={x||x-1|<1},B={x|3-2x-x2≥0}
(1)求(∁UA)∪(∁UB);
(2)若C={x|x2-4ax+3a2≥0}?∁U(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=2x為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線,則雙曲線C的離心率是(  )
A、
5
B、
5
2
C、
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=-4y的焦點坐標(biāo)是
 
,準(zhǔn)線方程是
 

查看答案和解析>>

同步練習(xí)冊答案