已知函數(shù)f(x)=2-x2,g(x)=x,且定義運(yùn)算a&b=
a,(a<b)
b,(a≥b)
,則函數(shù)f(x)&g(x)的最大值為( 。
A、2B、1C、-2D、-1
考點(diǎn):函數(shù)的最值及其幾何意義
專題:數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:從定義a&b上看,當(dāng)a<b時(shí),a&b=a;當(dāng)a≥b時(shí),a&b=b得知,a&b就是取a與b中的最小值,因此,在同一坐標(biāo)系畫函數(shù)f(x)與g(x)的圖象,
兩個(gè)函數(shù)的圖象中取下方的部分就是函數(shù)f(x)&g(x)的 圖象,再根據(jù)圖象得最大值.
解答: 解:從定義a&b上看,當(dāng)a<b時(shí),a&b=a;當(dāng)a≥b時(shí),a&b=b得知,a&b就是取a與b中的最小值,因此,在同一坐標(biāo)系畫函數(shù)f(x)與g(x)的圖象,
兩個(gè)函數(shù)的圖象中取下方的部分就是函數(shù)f(x)&g(x)的 圖象,其圖象如下:

根據(jù)圖象得最大值為1,
故選:B
點(diǎn)評(píng):本題主要考查利用數(shù)形結(jié)合的思想畫圖解決問(wèn)題,要充分利用題中給出的條件,把數(shù)的問(wèn)題向幾何圖形過(guò)度,通過(guò)函數(shù)的圖象求得答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體中ABCD-A1B1C1D1中,E、F分別為BB1、D1B1中點(diǎn).
(1)A1D與面BDD1所成角的正弦值;
(2)二面角A-B1D1-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)角θ為第四象限角,并且角θ的終邊與單位圓交于點(diǎn)P(x0,y0),若x0+y0=-
1
3
,則cos2θ=( 。
A、-
8
9
B、±
8
9
C、±
17
9
D、-
17
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(
π
2
+x)cos(
π
2
-x)+cosxcos(π-x)
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[-
π
4
π
4
]時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,底面ABCD為菱形的直四棱柱ABCD-A1B1C1D1,所有棱長(zhǎng)都為2,∠BAD=60°,E為BB1的延長(zhǎng)線上一點(diǎn),D1E⊥面D1AC.
(1)求線段B1E的長(zhǎng)度及三棱錐E-D1AC的體積V E-D1AC
(2)設(shè)AC和BD交于點(diǎn)O,在線段D1E上是否存在一點(diǎn)P,使EO∥面A1C1P?若存在,求D1P:PE的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),g(x)滿足
f(x)
g(x)
=ax
,且f′(x)g(x)>f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.若有窮數(shù)列{
f(n)
g(n)
}
的前n項(xiàng)和為Sn,則滿足不等式Sn>2015的最小正整數(shù)n等于( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,AD是直角△ABC斜邊上的高,沿AD把△ABC的兩部分折成直二面角(如圖2),DF⊥AC于F.
(Ⅰ)證明:BF⊥AC;
(Ⅱ)設(shè)∠DCF=θ,AB與平面BDF所成的角為α,二面角B-FA-D的大小為β,試用tanθ,cosβ表示tanα;
(Ⅲ)設(shè)AB=AC,E為AB的中點(diǎn),在線段DC上是否存在一點(diǎn)P,使得DE∥平面PBF?若存在,求
DP
PC
的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+lnx,a∈R.
(1)若函數(shù)f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)今g(x)=x2+2ax-f(x),是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e=2.71828…)時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式組
x+y≤2
0≤y≤2
x≥a.
表示的平面區(qū)域是一個(gè)三角形,則實(shí)數(shù)a的取值范圍是(  )
A、a≤0B、0≤a<2
C、0≤a≤2D、a>2

查看答案和解析>>

同步練習(xí)冊(cè)答案