5.圓心為(1,1)且過原點的圓的方程是(x-1)2+(y-1)2=2.

分析 由兩點間的距離公式求出圓心到原點的距離,即圓的半徑,代入圓的標準方程得答案.

解答 解:∵所求圓經過坐標原點,且圓心(1,1)與原點的距離為r=$\sqrt{2}$,
∴所求圓的方程為(x-1)2+(y-1)2=2.
故答案為:(x-1)2+(y-1)2=2.

點評 本題考查圓的標準方程,關鍵是熟記圓的標準方程的形式,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知兩個隨機變量X,Y滿足X+2Y=4,且X~N(1,22),則E(Y),D(Y)依次是( 。
A.$\frac{3}{2}$,2B.$\frac{1}{2}$,1C.$\frac{3}{2}$,1D.$\frac{1}{2}$,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1•a3=5
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{a_n}{2^n}$,Sn為數(shù)列{bn}的前n項和,證明:Sn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.過拋物線y2=2px(p>0)的焦點F垂直于對稱軸的直線交拋物線于A,B兩點,若線段AB的長為8,則p值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E是BC的中點,F(xiàn)是PA上的一個動點.
(1)求證:CF⊥BD;
(2)求二面角D-PE-A的大小的正弦值;
(3)若直線EF與平面CDE所成角的正切值為$\frac{1}{\sqrt{21}}$,求AF的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=2sinxcosx-2$\sqrt{3}$cos2x+$\sqrt{3}$,則下列結論正確的是( 。
A.f(x)的周期為2πB.f(x)在區(qū)間(0,$\frac{π}{4}$)內單調遞增
C.f(x)的一個對稱中心為($\frac{π}{3}$,0)D.當x∈[0,$\frac{π}{2}$]時,f(x)的值域為[-2$\sqrt{3}$,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求下列函數(shù)的值域:
(1)y=log${\;}_{\frac{1}{2}}$$\sqrt{4-{x}^{2}}$;
(2)y=$\frac{{2}^{x}+1}{{2}^{x}-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.當實數(shù)a在區(qū)間[1,6]隨機取值時,函數(shù)f(x)=-x2+ax+1在區(qū)間(2,+∞)上是單調減函數(shù)的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知△ABC的三邊長a、b、c成等比數(shù)列,邊長a、b、c所對的角依次為A、B、C,則sinB的取值范圍是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

同步練習冊答案