(本小題滿分12分)如圖所示,四棱錐中,為正方形, 分別是線段的中點. 求證:
(1)//平面 ; 
(2)平面⊥平面.

(1)證明見解析(2) 證明見解析

解析試題分析:(1)分別是線段的中點, 
又∵為正方形,, 
平面,平面,
//平面.                                                   ……6分
(2)∵,又,
.            
為正方形,∴,
,∴⊥平面,
平面,
∴平面⊥平面.                                             ……12分
考點:本小題主要考查線面平行和面面垂直的證明,考查學(xué)生的空間想象能力和推理論證的嚴(yán)謹(jǐn)性.
點評:證明空間線線、線面、面面平行或垂直時,要靈活運(yùn)用判定定理和性質(zhì)定理,先搞清楚證明需要的條件,再去找條件,特別注意的是定理中的隱含條件也是不可缺少的,要把定理需要的條件一一列清楚.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形中,,,將沿折起,使

(1)求證:平面; 
(2)求平面和平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖所示,四棱錐中,底面為正方形,平面,,,分別為、的中點.

(1)求證:;
(2)求平面EFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M;RQ,DB的延長線交于N;RP,DC的延長線交于K,求證:M、N、K三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四面體ABCD中,O、E分別是BD、BC的中點,

(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖幾何體,是矩形,,
上的點,且

(1)求證:;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示:一吊燈的下圓環(huán)直徑為4m,圓心為O,通過細(xì)繩懸掛在天花板上,圓環(huán)呈水平狀態(tài),并且與天花板的距離(即)為2m,在圓環(huán)上設(shè)置三個等分點A1,A2,A3。點C為上一點(不包含端點O、B),同時點C與點A1,A2,A3,B均用細(xì)繩相連接,且細(xì)繩CA1,CA2,CA3的長度相等。設(shè)細(xì)繩的總長為
(1)設(shè)∠CA1O =(rad),將y表示成的函數(shù)關(guān)系式;
(2)請你設(shè)計,當(dāng)角正弦值的大小是多少時,細(xì)繩總長最小,并指明此時 BC應(yīng)為多長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖, 在直三棱柱中,,,
(1)求證:;
(2)問:是否在線段上存在一點,使得平面?
若存在,請證明;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)四棱錐的底面是正方形,,點E在棱PB上.若AB=,
(Ⅰ)求證:平面;   
(Ⅱ)若E為PB的中點時,求AE與平面PDB所成的角的大小.

查看答案和解析>>

同步練習(xí)冊答案