1.若1<ex<2,則x的集合為( 。
A.(0,ln2)B.(-ln2,0)C.(1,2)D.[0,ln2]

分析 直接把不等式兩邊取以e為底數(shù)的對(duì)數(shù)求解.

解答 解:由1<ex<2,得$\left\{\begin{array}{l}{{e}^{x}>1①}\\{{e}^{x}<2②}\end{array}\right.$
解①得:x>0;解②得x<ln2.
取交集得:0<x<ln2.
∴x的集合為(0,ln2).
故選:A.

點(diǎn)評(píng) 本題考查指數(shù)不等式的解法,考查了指數(shù)函數(shù)的單調(diào)性,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知A、D分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=$\frac{{\sqrt{3}}}{2}$,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任意一點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過(guò)點(diǎn)A(2,1).
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 若P,Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且使∠PAQ的角平分線總垂直于x軸,試判斷直線PQ的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)向量$\overrightarrow{a}$=(4,2),$\overrightarrow$=(1,-1),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$等于( 。
A.2B.-2C.-12D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c已知b=4,c=5,A=60°.
(1)求邊長(zhǎng)a和△ABC的面積;
(2)求sin2B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖所示,在三棱柱ABCA1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),
求證:(1)GH∥面ABC
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)U=R,集合A={x|-3≤x≤5},B={x|x<-2,或x>6},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若直線a∥α,直線b?α,則直線a與直線b的位置關(guān)系為平行或異面.

查看答案和解析>>

同步練習(xí)冊(cè)答案