分析 根據(jù)等比數(shù)列的定義得到an-an-1=2q,為常數(shù),即{an}是等差數(shù)列,結合等差數(shù)列的性質以及等差數(shù)列的前n項和公式進行求解即可.
解答 解:∵數(shù)列{2an}是等比數(shù)列,∴設公比為q,
則$\frac{{2}^{{a}_{n}}}{{2}^{{a}_{n-1}}}$=2${\;}^{{a}_{n}-{a}_{n-1}}$=q,
則an-an-1=2q,為常數(shù),
則數(shù)列{an}是等差數(shù)列,
則a4+a2014=2a1009,
由a4+a1009+a2014=$\frac{3}{2}$,得3a1009=$\frac{3}{2}$,
即a1009=$\frac{1}{2}$,
則S2017=$\frac{2017({a}_{1}+{a}_{2017})}{2}$=$\frac{2017×2{a}_{1009}}{2}$=$\frac{2017}{2}$,
故答案為:$\frac{2017}{2}$
點評 本題主要考查數(shù)列求和的計算,根據(jù)等比數(shù)列和等差數(shù)列的定義判斷數(shù)列{an}是等差數(shù)列,以及利用等差數(shù)列的性質是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(-1)-f(1)<0 | B. | f(-1)-f(1)>0 | C. | f(-1)+f(1)<0 | D. | f(-1)+f(1)>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | me=mo | B. | mo<me | C. | me<mo | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com