如圖,矩形ABCD中,點(diǎn)E為邊CD的中點(diǎn),若在矩形中隨機(jī)撒一粒黃豆,則黃豆落在△ABE內(nèi)的概率為
 
考點(diǎn):幾何概型
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)題意,黃豆落在△ABE內(nèi)的概率是△ABE的面積與矩形ABCD的面積之比.
解答: 解:根據(jù)題意,得;
黃豆落在△ABE內(nèi)的概率為:
P=
S△ABE
S矩形ABCD
=
1
2
×AB•BC
AB•BC
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查了幾何概型的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果tan
α
2
=
1
3
,那么cosα的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖四棱錐P-ABCD的底面是梯形,BC∥AD,AB=BC=CD=1,AD=2,平面PAC⊥平面ABCD.
(1)求證:AP⊥CD;
(2)當(dāng)PA=PC=
6
2
時(shí),求直線(xiàn)PD與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,滿(mǎn)足a1=2,b1=1,b2+S2=8,a5-2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,設(shè)數(shù)列{cn}前n項(xiàng)和為T(mén)n,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖①,一個(gè)圓錐形容器的高為a=2,內(nèi)裝有高度為h的一定量的水,如果將容器倒置,這時(shí)水所形成的圓錐的高恰為1(如圖②),則圖①中的水面高度h=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為a的正方形,PD⊥底面ABCD,且PD=a,PA=PC=
2
a

(1)求證:點(diǎn)A在PA為直徑的圓上;
(2)若在這個(gè)四棱錐內(nèi)放一球,求此球的最大半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x1和x2是方程x2-mx-2=0的兩個(gè)實(shí)根,不等式a2-5a-3≥|x1-x2|對(duì)任意實(shí)數(shù)m∈[-1,1]恒成立;命題q:不等式ax2+2x-1>0有解;若命題p是真命題,命題q是假命題,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線(xiàn)有一條漸近線(xiàn)方程為2x-3y=0,則該雙曲線(xiàn)的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為(4,0),離心率為
4
5
,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知雙曲線(xiàn)的漸近線(xiàn)方程為y=±
3
4
x
,準(zhǔn)線(xiàn)方程為x=±
16
5
,求該雙曲線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案