如圖①,一個圓錐形容器的高為a=2,內(nèi)裝有高度為h的一定量的水,如果將容器倒置,這時水所形成的圓錐的高恰為1(如圖②),則圖①中的水面高度h=
 
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:空間位置關系與距離
分析:圓錐正置與倒置時,水的體積不變,另外水面是平行于底面的平面,此平面截得的小圓錐與原圓錐成相似體,它們的體積之比為對應高的立方比.
解答: 解:令圓錐倒置時水的體積為V′,圓錐體積為V,
V′
V
=13÷23=
1
8
,
V
V
=
7
8
,
倒置后:V=
1
8
V,
設此時水高為h,則
h3:23=7:8,
∴h=
37
,
故原來水面的高度為2-
37

故答案為:2-
37
點評:此題若用V=V計算是比較麻煩的,因為臺體的上底面半徑還需用h1=
1
3
h導出來,我們用V=V-V,而V與V的體積之間有比例關系,可以直接求出.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為( 。
A、y=cosx-1
B、y=-x2
C、y=x•|x|
D、y=-
1
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2x-2sinx+1.
(1)若當x∈R時,求f(x)的最小值及相應的值.
(2)設函數(shù)g(x)=msinx+2m,且當x∈[
π
6
3
]時,f(x)>g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,其前n項和為Sn,若a1a5=64,S5-S3=48.
(1)求數(shù)列{an}的通項公式;
(2)對于正整數(shù)k,m,l(k<m<l),求證:“m=k+1且l=k+3”是“5ak,am,al這三項經(jīng)適當排序后能構(gòu)成等差數(shù)列”成立的充要條件;
(3)設數(shù)列{bn}滿足:對任意的正整數(shù)n,都有a1bn+a2bn-1+a3bn-2+…+anb1=3•2n+1-4n-6,且集合M={n|
bn
an
≥λ,n∈N*}
中有且僅有3個元素,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
+2ax-lnx,若f(x)在區(qū)間[
1
3
,2]
上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD中,點E為邊CD的中點,若在矩形中隨機撒一粒黃豆,則黃豆落在△ABE內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨機詢問720名某高校在校大學生在購買食物時是否閱讀營養(yǎng)說明,得到如表
閱讀不閱讀合計
男生160p
女生q80
合計720
已知這720名大學生中隨機抽取1名,閱讀營養(yǎng)說明的概率為
11
18

(1)求p,q的值;
(2)請根據(jù)獨立性檢驗的知識來分析,有多少把握認為性別與閱讀營養(yǎng)說明之間有關系.
溫馨提示:隨機變量K2=
n(ad-bc)
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在實數(shù)集上定義運算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1對任意實數(shù)x都成立,則實數(shù)a的取值范圍是( 。
A、(-
1
2
3
2
)
B、(0,2)
C、(-1,1)
D、(-
3
2
,
1
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習冊答案