11.隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構對使用微信交流的態(tài)度進行調查,隨機調查了 50 人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表.
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)51012721
(I)由以上統(tǒng)計數(shù)據(jù)填寫下面 2×2 列聯(lián)表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;
年齡不低于45歲的人年齡低于45歲的人合計
贊成
不贊成
合計
(Ⅱ)若對年齡在[55,65),[65,75)的被調查人中隨機抽取兩人進行追蹤調查,記選中的4人中贊成使用微信交流的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.0500.0100.001
k03.8416.63510.828

分析 (I)根據(jù)題目中的數(shù)據(jù)填寫列聯(lián)表,利用公式計算K2,對照數(shù)表即可得出結論;
(Ⅱ)根據(jù)題意得出X的所有可能取值,計算對應的概率值,寫出X的分布列與數(shù)學期望值.

解答 解:(I)由以上統(tǒng)計數(shù)據(jù)填寫下面 2×2 列聯(lián)表,如下;

年齡不低于45歲的人年齡低于45歲的人合計
贊成102737
不贊成10313
合計203050
根據(jù)公式計算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{50{×(10×3-10×27)}^{2}}{37×13×20×30}$≈9.98>6.635,
所以有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;
(Ⅱ)根據(jù)題意,X的所有可能取值為0,1,2,3,
則P(X=0)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$×$\frac{6}{10}$=$\frac{9}{50}$,
P(X=1)=$\frac{{C}_{2}^{1}{•C}_{3}^{1}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$+$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$•$\frac{{C}_{1}^{1}{•C}_{4}^{1}}{{C}_{5}^{2}}$=$\frac{6}{10}$×$\frac{6}{10}$+$\frac{3}{10}$×$\frac{4}{10}$=$\frac{12}{25}$,
P(X=2)=$\frac{{C}_{2}^{2}{•C}_{3}^{0}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{2}}{{C}_{5}^{2}}$+$\frac{{C}_{2}^{1}{•C}_{3}^{1}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{1}{•C}_{1}^{1}}{{C}_{5}^{2}}$=$\frac{1}{10}$×$\frac{6}{10}$+$\frac{6}{10}$×$\frac{4}{10}$=$\frac{3}{10}$,
P(X=3)=$\frac{{C}_{2}^{2}{•C}_{3}^{0}}{{C}_{5}^{2}}$•$\frac{{C}_{4}^{1}{•C}_{1}^{1}}{{C}_{5}^{2}}$=$\frac{1}{10}$×$\frac{4}{10}$=$\frac{1}{25}$;
隨機變量X的分布列為:
 X 0 1 2 3
 P $\frac{9}{50}$ $\frac{12}{25}$ $\frac{3}{10}$ $\frac{1}{25}$
所以X的數(shù)學期望為EX=0×$\frac{9}{50}$+1×$\frac{12}{25}$+2×$\frac{3}{10}$+3×$\frac{1}{25}$=$\frac{30}{25}$=$\frac{6}{5}$.

點評 本題考查了離散型隨機變量的分布列與數(shù)學期望的計算問題,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,多面體EFABCD中,底面ABCD是正方形,AF⊥平面ABCD,DE∥AF,AB=DE=2,AF=1.
(1)證明:BE⊥AC;
(2)在棱BE上是否存在一點N,使得直線CN與平面ADE成30°角,若存在,求出BN的長度:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖三棱錐P-ABC中,PC⊥平面ABC,PC=$\frac{2}{\sqrt{3}}$,D是BC的中點,且△ADC是邊長為2的正三角形,求二面角P-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.點P是邊長為2的正△ABC的邊BC的中點,將△ACP沿AP折起,使得二面角C-AP-B為直二面角,點M為線段AC的中點,點N在線段BC上,且BN=2NC.
(Ⅰ)求四棱錐P-ABNM的體積;
(Ⅱ)求二面角M-PN-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.四面體ABCD及其三視圖如圖所示,點E、F、G、H分別是棱AB、BD、DC、CA的中點.
(1)證明:四邊形EFGH是矩形;
(2)求四面體ABCD的表面積.
(3)求直線AB與平面EFGH夾角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=2cosβ\\ y=2+2sinβ\end{array}\right.$(β為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1和曲線C2的極坐標方程;
(Ⅱ)已知射線l1:θ=α(0<α<$\frac{π}{2}$),將射線l1順時針旋轉$\frac{π}{6}$得到射線l2:θ=α-$\frac{π}{6}$,且射線l1與曲線C1交于O、P兩點,射線l2與曲線C2交于O、Q兩點,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=aexlnx在x=1處的切線與直線x+2ey=0垂直
(Ⅰ)求a的值;
(Ⅱ)證明:xf(x)>1-5ex-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x2+3|x-a|(a∈R).
(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分別記為M(a),m(a),求M(a)-m(a);
(Ⅱ)設b∈R,若|f(x)+b|≤3對x∈[-1,1]恒成立,求3a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若f(x)的定義域是[0,2],則函數(shù)g(x)=f(x-1)-f(2-x)的定義域是( 。
A.[0,2]B.[1,3]C.[1,2]D.[0,3]

查看答案和解析>>

同步練習冊答案