【題目】已知圓,直線(xiàn)經(jīng)過(guò)點(diǎn)A (1,0).

(1)若直線(xiàn)與圓C相切,求直線(xiàn)的方程;

(2)若直線(xiàn)與圓C相交于P,Q兩點(diǎn),求三角形CPQ面積的最大值,并求此時(shí)直線(xiàn)的方程.

【答案】(1)(2)yx-1或y=7x-7

【解析】試題分析:(1)由直線(xiàn)與圓相切可得圓心(3,4)到已知直線(xiàn)的距離等于半徑2,設(shè)直線(xiàn)點(diǎn)斜式方程,列方程可得斜率,最后驗(yàn)證斜率不存在時(shí)是否滿(mǎn)足條件(2)由垂徑定理可得弦長(zhǎng)PQ,而三角形的高為圓心到直線(xiàn)的距離d,所以,利用基本不等式求最值可得當(dāng)d時(shí),S取得最小值2,再根據(jù)點(diǎn)到直線(xiàn)距離公式求直線(xiàn)的斜率,即得的方程.

試題解析:(1)①若直線(xiàn)的斜率不存在,則直線(xiàn),符合題意.

②若直線(xiàn)斜率存在,設(shè)直線(xiàn),即.

由題意知,圓心(3,4)到已知直線(xiàn)的距離等于半徑2,

,解得

所求直線(xiàn)方程為,或;

(2)直線(xiàn)與圓相交,斜率必定存在,且不為0,設(shè)直線(xiàn)方程為,

則圓心到直線(xiàn)的距離

又∵三角形面積

∴當(dāng)d時(shí),S取得最小值2,則, ,

故直線(xiàn)方程為yx-1,或y=7x-7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中裝有編號(hào)為的3個(gè)黑球和編號(hào)為的2個(gè)紅球,從中任意摸出2個(gè)球.

(Ⅰ)寫(xiě)出所有不同的結(jié)果;

(Ⅱ)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率;

(Ⅲ)求至少摸出1個(gè)紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,的中點(diǎn).

)求證:;

)若四邊形是正方形,且,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年天貓五一活動(dòng)結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動(dòng)中消費(fèi)超過(guò)3000元的人群的年齡狀況,隨機(jī)在當(dāng)?shù)叵M(fèi)超過(guò)3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, 對(duì)應(yīng)的小矩形的面積分別是,且.

(1)以頻率作為概率,若該地區(qū)五一消費(fèi)超過(guò)3000元的有30000人,試估計(jì)該地區(qū)在五一活動(dòng)中消費(fèi)超過(guò)3000元且年齡在的人數(shù);

(2)計(jì)算在五一活動(dòng)中消費(fèi)超過(guò)3000元的消費(fèi)者的平均年齡;

(3)若按照分層抽樣,從年齡在 的人群中共抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex-ax-2.

(1)求f(x)的單調(diào)區(qū)間;

(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為Sn,點(diǎn)在直線(xiàn)上,數(shù)列為等差數(shù)列,且,前9項(xiàng)和為153.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè),數(shù)列的前n項(xiàng)和為,求使不等式對(duì)一切的都成立的最大整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了參加師大附中第30屆田徑運(yùn)動(dòng)會(huì)的開(kāi)幕式,高三年級(jí)某6個(gè)班聯(lián)合到集市購(gòu)買(mǎi)了6根竹竿,作為班期的旗桿之用,它們的長(zhǎng)度分別為3.8,4.3,3.6,4.5,4.0,4.1單位:米

1若從中隨機(jī)抽取兩根竹竿,求長(zhǎng)度之差不超過(guò)0.5米的概率;

2若長(zhǎng)度不小于4米的竹竿價(jià)格為每根10元,長(zhǎng)度小于4米的竹竿價(jià)格為每根從這6根竹竿中隨機(jī)抽取兩根,若期望這兩根竹竿的價(jià)格之和為18元,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對(duì)數(shù)的底數(shù).

1)當(dāng)時(shí),求的最大值;

2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,且橢圓C過(guò)點(diǎn)P3,2

求橢圓C的標(biāo)準(zhǔn)方程;

與直線(xiàn)OP平行的直線(xiàn)交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案