11.如圖,在四邊形ABCD中,∠ABD=45°,∠ADB=30°,BC=1,DC=2,cos∠BCD=$\frac{1}{4}$,則BD=2;三角形ABD的面積為$\sqrt{3}$-1.

分析 △CBD中,由余弦定理,可得,BD,△ABD中,利用正弦定理,可得AD,利用三角形的面積公式,可得結(jié)論.

解答 解:△CBD中,由余弦定理,可得,BD=$\sqrt{1+4-2×1×2×\frac{1}{4}}$=2,
△ABD中,利用正弦定理,可得AD=$\frac{2sin45°}{sin105°}$=2$\sqrt{3}$-2,
∴三角形ABD的面積為$\frac{1}{2}×2×$(2$\sqrt{3}$-2)×$\frac{1}{2}$=$\sqrt{3}$-1,
故答案為2,$\sqrt{3}$-1.

點(diǎn)評(píng) 本題考查余弦定理、正弦定理的運(yùn)用,考查三角形的面積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某校高三年級(jí)要從5名男生和2名女生中任選3名代表參加數(shù)學(xué)競(jìng)賽(每人被選中的機(jī)會(huì)均等),則在男生甲被選中的情況下,男生乙和女生丙至少一個(gè)被選中的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)($\sqrt{2}$,1),以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓經(jīng)過(guò)橢圓的焦點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)(-1,0)的直線l與橢圓C相交于A、B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$恒為定值?若存在,求出該定值及點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知i為虛數(shù)單位,則復(fù)數(shù)z=(1+i)i對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$是非零向量,則“$\overrightarrow{a}$,$\overrightarrow$共線”是“|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短軸長(zhǎng)為2$\sqrt{3}$,右焦點(diǎn)為F(1,0),點(diǎn)M是橢圓C上異于左、右頂點(diǎn)A,B的一點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線AM與直線x=2交于點(diǎn)N,線段BN的中點(diǎn)為E.證明:點(diǎn)B關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)在直線MF上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知△ABC三內(nèi)角A,B,C對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,且$B=\frac{2π}{3}$,又邊長(zhǎng)b=3c,那么sinC=$\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在△ABC中,AB⊥BC,點(diǎn)D,E分別在AB,AC上,AD=2DB,AC=3EC,沿DE將△ADE翻折起來(lái),使得點(diǎn)A到P的位置,滿(mǎn)足$PB=\sqrt{3}BD$.
(1)證明:DB⊥平面PBC;
(2)若$PB=BC=\sqrt{3},PC=\sqrt{6}$,點(diǎn)M在PC上,且,求三棱錐P-BEM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號(hào)“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對(duì)低頭族的認(rèn)識(shí),從某社區(qū)的500名市民中,隨機(jī)抽取n名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的得到頻率分布表和頻率分布直方圖如下:
 組數(shù)分組(單位:歲)頻數(shù)頻率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合計(jì)n1.00
(1)求出表中的a,b,n的值,并補(bǔ)全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定從所隨機(jī)抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再?gòu)某槌龅倪@20名中年齡在[30,40)的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在[35,40)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案