已知x>0,y>0,且x+2y=1,求證:
1
xy
≥8.
考點(diǎn):基本不等式
專題:證明題
分析:先把要證的式子等價(jià)轉(zhuǎn)化為xy≤
1
8
,再由條件x+2y=1利用基本不等式證明
解答: 證明:由于x>0,y>0,則
1
xy
≥8?xy≤
1
8
,下面證明xy≤
1
8

由基本不等式知1=x+2y≥2
x•2y
=2
2xy

當(dāng)且僅當(dāng)x=2y時(shí)上述等號(hào)成立,又x+2y=1,
∴x=
1
2
、y=
1
4
時(shí)上述等號(hào)成立
2
2xy
≤1
成立
兩邊平方得,8xy≤1,
∴xy≤
1
8
,命題得證.
點(diǎn)評(píng):利用等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,把要證的命題轉(zhuǎn)化成證明較簡(jiǎn)單的問(wèn)題.其次,利用基本不等式解題時(shí),不要忘了驗(yàn)證“=”成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,若asinA=bcosB,則∠B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|2≤x≤3},B={x|x<1或x>5},求A∩B及A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
log
1
2
(2x-1)
的定義域是(  )
A、[1,+∞)
B、(0,+∞)
C、[0,1]
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)方程|ax-1|=x的解集為A,若A?≠[0,2],則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:函數(shù)f(x)=-x2+4x在(-∞,2]上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|log2(x-1)<1},N={x|
1
4
≤(
1
2
x<1,求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2ax2+2x-3-a(a∈R,且a≠0),求拋物線y=f(x)的對(duì)稱軸方程及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x截得的弦長(zhǎng)為2
7

(1)求圓C的方程;  
(2)判斷圓C與圓M:(x-10)2+(y-10)2=1的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案