【題目】高一(1)班參加校生物競(jìng)賽學(xué)生成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖,據(jù)此解答如下問(wèn)題:
(1)求高一(1)班參加校生物競(jìng)賽人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選兩人進(jìn)行某項(xiàng)研究,求至少有一人分?jǐn)?shù)在[90,100]之間的概率.

【答案】
(1)解:∵分?jǐn)?shù)在[50,60)之間的頻數(shù)為2,頻率為0.008×10=0.08,

∴高一(1)班參加校生物競(jìng)賽人數(shù)為n= =25.

所以分?jǐn)?shù)在[80,90)之間的頻數(shù)為25﹣2﹣7﹣10﹣2=4

頻率分布直方圖中[80,90)間的矩形的高為 =0.016.


(2)解:至少有一人分?jǐn)?shù)在[90,100]之間為事件A

用a,b,c,d表示[80,90)之間的4個(gè)分?jǐn)?shù),用e,f表示[90,100]之間的2個(gè)分?jǐn)?shù),則滿足條件的所有基本事件為:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e)(c,f),(d,e),(d,f),(e,f)共15個(gè),(10分)

其中滿足條件的基本事件有:(a,e),(a,f),(b,e),(b,f),(c,e)(c,f),(d,e),(d,f),(e,f)共9個(gè)

根據(jù)古典概型概率計(jì)算公式,得

答:至少有一人分?jǐn)?shù)在[90,100]之間的概率


【解析】(1)根據(jù)分?jǐn)?shù)在[50,60)的頻率為0.008×10,和由莖葉圖知分?jǐn)?shù)在[50,60)之間的頻數(shù)為2,得到全班人數(shù).最后根據(jù)差值25﹣2﹣7﹣10﹣2求出分?jǐn)?shù)在[80,90)之間的頻數(shù)即可.又分?jǐn)?shù)在[80,90)之間的頻數(shù)為4,做出頻率,根據(jù)小長(zhǎng)方形的高是頻率比組距,得到結(jié)果.(2)本小題是一個(gè)等可能事件的概率,將分?jǐn)?shù)編號(hào)列舉出在[80,100]之間的試卷中任取兩份的基本事件,至少有一份在[90,100]之間的基本的事件有9個(gè),得到概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息,以及對(duì)莖葉圖的理解,了解莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求實(shí)數(shù)m的值;
(2)設(shè)全集為R,若ARB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某;锸抽L(zhǎng)期以面粉和大米為主食,面食每100 g含蛋白質(zhì)6個(gè)單位,含淀粉4個(gè)單位,售價(jià)0.5元,米食每100 g含蛋白質(zhì)3個(gè)單位,含淀粉7個(gè)單位,售價(jià)0.4元,學(xué)校要求給學(xué)生配制盒飯,每盒盒飯至少有8個(gè)單位的蛋白質(zhì)和10個(gè)單位的淀粉,問(wèn)應(yīng)如何配制盒飯,才既科學(xué)又費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,AB∥CD,∠BAD=90°,AD= ,DC=2AB=2,E為BC中點(diǎn).

(1)求證:平面PBC⊥平面PDE
(2)線段PC上是否存在一點(diǎn)F,使PA∥平面BDF?若存在,求 的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l經(jīng)過(guò)兩點(diǎn)(2,1),(6,3).
(1)求直線l的方程;
(2)圓C的圓心在直線l上,并且與x軸相切于(2,0)點(diǎn),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在斜三棱柱ABC﹣A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在面ABC上的射影H必在(
A.直線AB上
B.直線BC上
C.直線CA上
D.△ABC內(nèi)部

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈[1,2],x2﹣a≥0;命題q:x0∈R,使得 +(a﹣1)x0+1<0.若“p或q”為真,“p且q”為假,則實(shí)數(shù)a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案