4.網(wǎng)絡(luò)購物已經(jīng)被大多數(shù)人接受,隨著時(shí)間的推移,網(wǎng)絡(luò)購物的人越來越多,然而也有部分人對網(wǎng)絡(luò)購物的質(zhì)量和信譽(yù)產(chǎn)生懷疑.對此,某新聞媒體進(jìn)行了調(diào)查,在所有參與 調(diào)查的人中,持“支持”和“不支持”態(tài)度的人數(shù)如表所示:
年齡態(tài)度支持不支持
20歲以上50歲以下800200
50歲以上(含50歲)100300
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取m個(gè)人,已知從持“支持”態(tài)度的人中抽取了9人,求m的值;
(2)是否有99.9%的把握認(rèn)為支持網(wǎng)絡(luò)購物與年齡有關(guān)?
參考數(shù)據(jù):
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
P(K2≥k00.050.0100.001
k03.8416.63510.828

分析 (1)根據(jù)分層抽樣,建立方程,即可求m的值;
(2)求出K2,與臨界值比較,即可得出結(jié)論.

解答 解:(1)由題意,得$\frac{800+900}{9}=\frac{800+200+100+300}{m}$,
所以m=14…(5分)
(2)根據(jù)題意得2×2列聯(lián)表如下,

年齡態(tài)度支持不支持合計(jì)
20歲以上50歲以下8002001000
50歲以上(含50歲)100300400
合計(jì)9005001400
…(8分)
所以K2=$\frac{1400×(800×300-100×200)^{2}}{900×500×1000×400}$≈376.444>10.828…(10分)
所以有99.9%的把握認(rèn)為是否支持網(wǎng)絡(luò)購物與年齡有關(guān)…(12分)

點(diǎn)評 本題考查分層抽樣,考查獨(dú)立性檢驗(yàn)知識的運(yùn)用,正確計(jì)算是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某人種植一種經(jīng)濟(jì)作物,根據(jù)以往的年產(chǎn)量數(shù)據(jù),得到年產(chǎn)量頻率分布直方圖如圖所示,以各區(qū)間中點(diǎn)值作為該區(qū)間的年產(chǎn)量,得到平均年產(chǎn)量為455kg,已知當(dāng)年產(chǎn)量低于350kg時(shí),單位售價(jià)為20元/kg,若當(dāng)年產(chǎn)量不低于350kg而低于550時(shí),單位售價(jià)為15元/kg,當(dāng)年產(chǎn)量不低于550kg時(shí),單位售價(jià)為10元/kg.
(1)求圖中a,b的值;
(2)試估計(jì)年銷售額的期望是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.關(guān)于直線a,b以及平面M,N,下列命題中正確的是( 。
A.若a∥M,b∥M,則a∥bB.若a∥M,b⊥a,則b⊥M
C.若b?M,且b⊥a,則a⊥MD.若a⊥M,a∥N,則 M⊥N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某幾何體的三視圖如圖所示,則該幾何體的體積是$2π+\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\frac{π}{2}$≤β≤α≤$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2α,cos2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c,如果$\frac{sinB}{sinA}$,$\frac{sinC}{sinA}$,$\frac{cosB}{cosA}$成等差數(shù)列,那么角A的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,則f(f($\frac{1}{2}$))]=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線l1:(a+2)x+3y=5與直線l2:(a-1)x+2y=6平行,則直線l1在x軸上的截距為(  )
A.-1B.$\frac{5}{9}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在面積為S的正方形ABCD的邊AB上任取一點(diǎn)P,則△PCD的面積等于$\frac{S}{2}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案