【題目】ABC,A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大;

()a=2,ABC的面積為,求C的大小。

【答案】12

【解析】試題分析:(1)先根據(jù)正弦定理將邊化為角,再根據(jù)誘導公式化簡得cosC=-,即得角C的大。唬2)先根據(jù)三角形面積公式得b,再根據(jù)余弦定理得c.

試題解析:解:(I)ABC,2acosC+bcosC+ccosB=0,

∴由正弦定理可得:2sinAcosC+sinBcosC+sinCcosB=0

2sinAcosC+sin(B+C)=0,..

ABC,sin(B+C)=sinA≠0.cosC=-,.

0<C< .C=...

(II)S=absinC=,a=2,C=b=1.

由余弦定理得c=4+1-2×2×1×(-)=7,c=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中,42,且最大角的余弦值是,則的面積等于______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是20個國家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.

國家和地區(qū)

排放總量/千噸

人均排放量/

國家和地區(qū)

排放總量/千噸

人均排放量/

A

10330000

7.4

K

480000

2.0

B

5300000

16.6

L

480000

7.5

C

3740000

7.3

M

470000

3.9

D

2070000

1.7

N

410000

5.3

E

1800000

12.6

O

390000

16.9

F

1360000

10.7

P

390000

6.4

G

840000

10.2

Q

370000

5.7

H

630000

12.7

R

330000

6.2

I

550000

15.7

S

320000

6.2

J

510000

2.6

T

490000

16.6

1)這20個國家和地區(qū)人均二氧化碳排放量的中位數(shù)是多少?

2)針對這20個國家和地區(qū),請你找出二氧化碳排放總量較少的前15%的國家和地區(qū).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當時,求的圖象在處的切線方程;

(Ⅱ)若函數(shù)有兩個不同零點, ,且,求證: ,其中的導函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1) 討論的單調性;

(2) ,當時, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)當時,證明:;

3)設函數(shù)的圖象與直線的兩個交點分別為,,的中點的橫坐標為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點M(0,-1),直線l經(jīng)過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面側面,,,,為棱的中點,在棱上,.

(1)求證:的中點;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假:

1)一次函數(shù)是非零常數(shù))的圖象一定經(jīng)過點

2)直角三角形的外心一定在斜邊上;

3)已知,則的充要條件;

4)如果都能被5整除,則也能被5整除.

查看答案和解析>>

同步練習冊答案