設(shè),其中,曲線在點(diǎn)處的切線垂直于軸.

(1)求的值;

(2)求函數(shù)的極值.

 

【答案】

(1);(2)處取得極大值.

【解析】

試題分析:(1)求出函數(shù)的導(dǎo)數(shù),將題中的條件“曲線在點(diǎn)處的切線垂直于軸”轉(zhuǎn)化得到,從而求出參數(shù)的值;(2)在(1)的基礎(chǔ)上求出函數(shù)的解析式,利用導(dǎo)數(shù)求出函數(shù)的極值即可.

試題解析:(1),        ,

由于曲線在點(diǎn)處的切線垂直于軸,故該切線斜率為,即

;

(2)由(1)知,,,

,故上為增函數(shù);

,故上為減函數(shù);

處取得極大值.

考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.函數(shù)的極值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建莆田一中高三上學(xué)期第一學(xué)段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)其中,曲線在點(diǎn)處的切線方程為

(I)確定的值;

(II)設(shè)曲線在點(diǎn)處的切線都過(guò)點(diǎn)(0,2).證明:當(dāng)時(shí),;

(III)若過(guò)點(diǎn)(0,2)可作曲線的三條不同切線,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:哈三中2011屆度上學(xué)期高三學(xué)年9月份月考數(shù)學(xué)試題(文史類) 題型:解答題

 

 (本小題滿分12分)設(shè)函數(shù),其中,曲線在點(diǎn)處的切線方程為

(1)若的極值點(diǎn),求的解析式

(2)若過(guò)點(diǎn)可作曲線的三條不同切線,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè),其中,曲線在點(diǎn)處的切線垂直于軸.

(Ⅰ) 求的值;

(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè),其中,曲線在點(diǎn)處的切線與軸相交于點(diǎn)

(1)確定的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值。

查看答案和解析>>

同步練習(xí)冊(cè)答案