分析 (1)利用三角函數(shù)的倍角公式以及輔助角公式將函數(shù)進(jìn)行化簡即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求出函數(shù)f(x)在x∈[0,$\frac{π}{2}$]的取值情況,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:(1)$f(x)=1+cos(2x+\frac{3π}{2})-\sqrt{3}cos(π-2x)$
=$1+sin2x+\sqrt{3}cos2x$=$1+2(\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x)$
=$1+2sin(2x+\frac{π}{3})$,
∵2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,
∴函數(shù) 的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$].k∈Z;
(2)由f(x)-m=2得f(x)=m+2,
當(dāng)x∈[0,$\frac{π}{2}$]時(shí),2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
由圖象得f(0)=1+2sin$\frac{π}{3}$=1+$\sqrt{3}$,
函數(shù)f(x)的最大值為1+2=3,
∴要使方程f(x)-m=2在x∈[0,$\frac{π}{2}$]上有兩個(gè)不同的解,
則f(x)=m+2在x∈[0,$\frac{π}{2}$]上有兩個(gè)不同的解,
即函數(shù)f(x)和y=m+2在x∈[0,$\frac{π}{2}$]上有兩個(gè)不同的交點(diǎn),
∴1+$\sqrt{3}$≤m+2<3,
即$\sqrt{3}$-1≤m<1.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用輔助角公式將函數(shù)進(jìn)行化簡,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x-1 | B. | y=$\frac{{{x^2}-1}}{x+1}$ | C. | y=|x-1| | D. | y=${(\frac{x-1}{{\sqrt{x-1}}})^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{12}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位 | D. | 向左平移$\frac{π}{12}$個(gè)單位 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com