已知函數(shù),若對于任意,都有    成立,則的取值范圍是 
A.B.
C.D.
A

試題分析:根據(jù)題意,由于函數(shù),若對于任意,則可知,那么可知,因此只要,結合余弦函數(shù)的性質(zhì)可知,的取值范圍是,故選A
點評:解決的關鍵是利用函數(shù)的單調(diào)性來結合不等式的性質(zhì)得到參數(shù)的范圍。屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是定義在上的單調(diào)函數(shù),且對任意的,都有,則方程的解所在的區(qū)間是              (     )
A.   B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)單調(diào)增區(qū)間;
(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)在區(qū)間內(nèi)恒有,則函數(shù)的單調(diào)遞減區(qū)間是                 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)滿足對一切都有,且,當時有.
(1)求的值;
(2)判斷并證明函數(shù)上的單調(diào)性;
(3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值.
(2)若,求的最小值;
(3)在(Ⅱ)上求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)的圖象如圖所示,且與軸相切于原點,若函數(shù)的極小值為-4.

(1)求的值;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線的所有切線中,斜率最小的切線方程是           。

查看答案和解析>>

同步練習冊答案