分析 (1)由兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理化簡已知,結(jié)合cosB≠0,可求sinC=$\frac{1}{2}$,結(jié)合C為銳角,可得C的值.
(2)由已知及余弦定理可得cosA,利用同角三角函數(shù)基本關系式可求sinA,利用正弦定理可求c,利用兩角和的正弦函數(shù)公式可求sinB,進而利用三角形面積公式即可計算得解.
解答 (本題滿分為12分)
解:(1)∵2sinA-cosB=2sinBcosC,
∴2(sinBcosC+sinCcosB)=2sinBcosC+cosB,可得:2sinCcosB=cosB,
∵角B為鈍角,cosB≠0,
∴sinC=$\frac{1}{2}$,
∴由C為銳角,可得:C=$\frac{π}{6}$.
(2)∵a=2,b2+c2-a2=2bccosA=$\frac{8}{5}$bc,
可得:cosA=$\frac{4}{5}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
∴c=$\frac{a•sinC}{sinA}$=$\frac{2×\frac{1}{2}}{\frac{3}{5}}$=$\frac{5}{3}$,
sinB=sinAcosC+cosAsinC=$\frac{3}{5}×\frac{\sqrt{3}}{2}$+$\frac{4}{5}×\frac{1}{2}$=$\frac{4+3\sqrt{3}}{10}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×$$\frac{5}{3}$×$\frac{4+3\sqrt{3}}{10}$=$\frac{4+3\sqrt{3}}{6}$.
點評 本題主要考查了兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,余弦定理,同角三角函數(shù)基本關系式,正弦定理,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${A}_{n}^{m}$≥${C}_{n}^{m}$ | B. | ${A}_{n}^{m}$>${C}_{n}^{m}$ | C. | ${A}_{n}^{m}$=${C}_{n}^{m}$ | D. | ${A}_{n}^{m}$≠${C}_{n}^{m}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4$\sqrt{17}$,17] | B. | (0,4$\sqrt{17}$) | C. | ($\frac{17\sqrt{2}}{2}$,17] | D. | (0,$\frac{17\sqrt{2}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 求3+4+5+…+63的值 | B. | 求3+4+5+…+64的值 | ||
C. | 求數(shù)列{3n}的前6項和 | D. | 求數(shù)列{3n}的前7項和 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com