【題目】如圖,在四棱錐中, 平面, ,,,,是線段的中點.

(1)證明:平面

(2)當(dāng)為何值時,四棱錐的體積最大?并求此最大值

【答案】(1)見解析(2)當(dāng)PA=4時,體積最大值為16.

【解析】

(1)取PD中點N,易證MNCB為平行四邊形,進(jìn)而得BMCN平行,得證;

(2)設(shè)PAx(0),把體積表示為關(guān)于x的函數(shù),借助不等式求得最大值.

(1)取PD中點N,連接MNCN,

MAP的中點,

MNADMN,

ADBC,AD=2BC,

MNBCMNBC,

∴四邊形MNCB是平行四邊形,

MBCN,

BM平面PCDCN平面PCD,

BM∥平面PCD;

(2)設(shè)PAx(0<x<4),

PA⊥平面ABCD,

PAAB

,

AB,

又∵ABAD,AD=2BC=4,

VPABCD

=16,

當(dāng)且僅當(dāng)x,即x=4時取等號,

故當(dāng)PA=4時,四棱錐PABCD的體積最大,最大值為16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著我國汽車消費水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進(jìn)行統(tǒng)計,得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車中隨機(jī)選取一輛,該車的使用年限在”為事件試估計的概率;

(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;

②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正整數(shù)n的各位數(shù)字中,共含有個1,個2,,個n.證明:并確定使等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市面上有某品牌型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過5000小時,經(jīng)銷商對型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計,得到如下頻率分布直方圖:

某商家因原店面需要重新裝修,需租賃一家新店面進(jìn)行周轉(zhuǎn),合約期一年.新店面需安裝該品牌節(jié)能燈5支(同種型號)即可正常營業(yè).經(jīng)了解,20瓦和55瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝.已知型和型節(jié)能燈每支的價格分別為120元、25元,當(dāng)?shù)厣虡I(yè)電價為0.75/千瓦時.假定該店面一年周轉(zhuǎn)期的照明時間為3600小時,若正常營業(yè)期間燈壞了立即購買同型燈管更換.(用頻率估計概率)

)根據(jù)頻率直方圖估算型節(jié)能燈的平均使用壽命;

)根據(jù)統(tǒng)計知識知,若一支燈管一年內(nèi)需要更換的概率為,那么支燈管估計需要更換.若該商家新店面全部安裝了型節(jié)能燈,試估計一年內(nèi)需更換的支數(shù);

)若只考慮燈的成本和消耗電費,你認(rèn)為該商家應(yīng)選擇哪種型號的節(jié)能燈,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F是橢圓的左焦點,橢圓的離心率為,B為橢圓的左頂點和上頂點,點Cx軸上,,的外接圓M恰好與直線相切.

1求橢圓的方程;

2過點C的直線與已知橢圓交于P,Q兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足,且為偶函數(shù),若內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,,分別是棱所在直線上的動點:

1)求的取值范圍:

2)若為面內(nèi)的一點,且,求的余弦值:

3)若、分別是所在正方形棱的中點,試問在棱上能否找到一點,使平面?若能,試確定點的位置,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三位數(shù),若以為三條邊的長可以構(gòu)成一個等腰(含等邊)三角形,則這樣的位數(shù)(  )

A.45個 B81個 C165個 D216個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的中心為原點,焦點,軸上,離心率為.過的直線,兩點,且的周長為.

(1)求橢圓的方程;

(2)圓軸正半軸相交于兩點,(點在點的左側(cè)),過點任作一條直線與橢圓相交于,兩點,連接,,求證.

查看答案和解析>>

同步練習(xí)冊答案