在△ABC中,∠A,∠B,∠C成等差數(shù)列的充要條件是∠B=60°.判斷此結(jié)論是否正確,并說明理由.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:在△ABC中,“∠B=60°”是∠A,∠B,∠C三個角成等差數(shù)列的充要條件,由內(nèi)角和及等差數(shù)列的性質(zhì)判斷.
解答: 解:結(jié)論成立.
因為三角形內(nèi)角和為180°,即∠A+∠B+∠C=180°,
等差中項概念可知,2∠B=∠A+∠C,可得∠B=60°.
根據(jù)∠B=60°推出∠A、∠B、∠C成等差數(shù)列,
在△ABC中,∠A,∠B,∠C成等差數(shù)列的充要條件是∠B=60°;
點評:本題考查充要條件的判斷與證明,等差數(shù)列的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x-4>0},B={x|-2≤x≤3},則(∁RA)∩B=( 。
A、R
B、[-2,-1]
C、[-1,3]
D、[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線的右焦點
x2
a2
-
y2
b2
=1的右焦點,點A,B分別在其兩條漸進(jìn)線上,且滿足
BF
=2
FA
OA
AB
=0(O為坐標(biāo)原點),則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程2x2-(m+1)x+m=0的兩個實數(shù)根都在(3,4)內(nèi),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體ABCD的棱長為a,其四個面的中心分別為E,F(xiàn),G,H,設(shè)四面體EFGH的棱長為b,則a:b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

鐘表經(jīng)過4小時,時針與分針各轉(zhuǎn)了
 
度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0)的焦點為F,點A(a,4)為拋物線C上的定點,點P為拋物線C上的動點.且△FOA的外接圓圓心到準(zhǔn)線的距離為
3
2

(1)求拋物線C的方程;
(2)過P作圓x2+(y-1)2=
1
4
的兩條切線分別交該圓于點M,N,求四邊形PMFN面積的最小值及此時P點坐標(biāo).
(3)設(shè)點T(0,t),且對拋物線C上的任意動點P,∠TPF總為銳角,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=-x2+ax-
a
4
+
1
2
,x∈[-1,1]的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sinωx+
3
2
cosωx(ω>0)的周期為4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移
2
3
個單位得到函數(shù)g(x)的圖象,
P、Q分別為函數(shù)g(x)圖象的最高點和最低點(如圖),求∠OQP的大。

查看答案和解析>>

同步練習(xí)冊答案