已知函數(shù)f(x)=
3
2
sinωx+
3
2
cosωx(ω>0)的周期為4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移
2
3
個(gè)單位得到函數(shù)g(x)的圖象,
P、Q分別為函數(shù)g(x)圖象的最高點(diǎn)和最低點(diǎn)(如圖),求∠OQP的大小.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用三角恒等變換化簡函數(shù)的解析式為 f(x)=
3
sin(ωx+
π
3
),根據(jù)函數(shù)的周期為4=
ω
,求得ω 的值,可得f(x)的解析式.
(2)由條件根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得函數(shù)g(x)=
3
sin
π
2
x,求出P、Q的坐標(biāo),利用余弦定理求得cosθ 的值,可得θ的值.
解答: 解:(1)f(x)=
3
2
sinωx+
3
2
cosωx(ω>0)=
3
1
2
sinωx+
3
2
cosωx)=
3
sin(ωx+
π
3
),
由于函數(shù)的周期為4=
ω
,得ω=
π
2
,
故f(x)=
3
sin(
π
2
x+
π
3
).
(2)將f(x)的圖象沿x軸向右平移
2
3
個(gè)單位得到函數(shù)g(x)=
3
sin
π
2
x.
因?yàn)镻、Q分別為該圖象的最高點(diǎn)和最低點(diǎn),
∴P(1,
3
)、Q (3,-
3
).
所以O(shè)P=2,PQ=4,OQ=
12
,cosθ=
OQ2+PQ2-OP2
2OQ•QP
=
3
2
,
∴θ=
π
6
點(diǎn)評:本題考查了三角函數(shù)和角公式的變換和三角函數(shù)圖象周期、對稱、平移等基本性質(zhì),考查運(yùn)用有關(guān)勾股定理、余弦定理求解三角形的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C成等差數(shù)列的充要條件是∠B=60°.判斷此結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
3x-y-1≥0
3x+y-11≤0
y≥2
則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且橢圓Γ 的右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合.
(Ⅰ)求橢圓Γ 的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,設(shè)直線m:y=2x與橢圓Γ 交于A,B兩點(diǎn)(其中點(diǎn)A在第一象限),且直線m與定直線x=2交于D,過D作直線DC∥AF交x軸于點(diǎn)C,試判斷直線AC與橢圓Γ 的公共點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與函數(shù)y=x有相同圖象的一個(gè)函數(shù)是(  )
A、y=
x2
B、y=(
x
2
C、y=logaax(a>o,a≠1)
D、y=
x2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=x-1與⊙O:x2+y2=4相交于A,B兩點(diǎn),過點(diǎn)A,B的兩條切線相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo);
(2)若N為線段AB上的任意一點(diǎn)(不包括端點(diǎn)),過點(diǎn)N的直線交⊙O于C,D兩點(diǎn),過點(diǎn)C、D的兩條切線相交于點(diǎn)Q,判斷點(diǎn)Q的軌跡是否經(jīng)過定點(diǎn)?若過定點(diǎn),求出該點(diǎn)的坐標(biāo);若不過定點(diǎn),說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以y=±x為漸近線且經(jīng)過點(diǎn)(2,0)的雙曲線方程為( 。
A、
x2
2
-
y2
2
=1
B、
x2
4
-
y2
4
=1
C、
y2
4
-
x2
4
=1
D、
x2
8
-
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
sinx,cosx),
b
=(cosx,sinx),f(x)=2
a
b
-1

(1)求函數(shù)f(x)的單調(diào)減區(qū)間及其圖象的對稱軸方程;
(2)當(dāng)x∈[0,π]時(shí),若f(x)=-1,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相交,則雙曲線C離心率的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案