10.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n=23或24.

分析 由已知得a1<a2<a3<…<a23<a24=0,從而得到Sn取得最小值時,n取23或24.

解答 解:∵數(shù)列{an}的通項公式是an=2n-48,
∴a24=2×24-48=0,
∴a1<a2<a3<…<a23<a24=0,
∴Sn取得最小值時,n取23或24,即S23=S24最小.
故答案為:23或24.

點評 本題考查等差數(shù)列的前n項和取最小值時,項數(shù)n的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:方程x2-2x+m=0有實根,命題q:m∈[-1,5].
(1)當命題p為真命題時,求實數(shù)m的取值范圍;
(2)若p∧q為假命題,p∨q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,如果輸入s=0.1,則輸出的n=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根九節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面3節(jié)的容積共9升,下面3節(jié)的容積共45升,則第五節(jié)的容積為( 。
A.7升B.8升C.9升D.11升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a∈{-2,0,1,3},b∈{1,2},則曲線ax2+by2=1為橢圓的概率是( 。
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知命題p:x2-5x-6≤0;命題q:x2-6x+9-m2≤0,若¬p是¬q的充分不必要條件,則實數(shù)m的取值范圍是[-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知曲線y=lnx的切線過原點,則此切線的斜率是$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點分別為F1,F(xiàn)2,點P(x0,$\frac{5}{2}$)為雙曲線上一點,若△PF1F2的內(nèi)切圓半徑為1且圓心G到原點O的距離為$\sqrt{5}$,則雙曲線方程$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+ax-$\frac{4f′(2)}{x}$(a∈R)在x=2處的切線經(jīng)過點(-4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式$\frac{2xlnx}{{1-{x^2}}}>mx-1$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案