【題目】已知函數(shù).
(1)設(shè),
①記的導(dǎo)函數(shù)為,求;
②若方程有兩個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;
(2)若在上存在一點(diǎn)使成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或.
【解析】試題分析:(1)①對(duì)進(jìn)行求導(dǎo),將代入可得的值,
試題解析: 的定義域, 的定義域?yàn)?/span>,
(1)①,∴;②對(duì)進(jìn)行二次求導(dǎo),判斷的單調(diào)性得其符號(hào),從而可得的單調(diào)性,結(jié)合圖象的大致形狀可得的取值范圍;(2)將題意轉(zhuǎn)化為,令,題意等價(jià)于在上的最小值小于0,對(duì)進(jìn)行求導(dǎo),對(duì)導(dǎo)函數(shù)進(jìn)行分類討論,判斷單調(diào)性得其最值.
②,∴遞增,又,所以在上遞減, 遞增。又趨于0的時(shí)候, 趨于6; 趨于的時(shí)候, 趨于,又,所以;
(2)由題可得,∴,∴,
令,則在上的最小值小于0,
又,
1,當(dāng)時(shí),即, 在上遞減,所以,解得;
2,當(dāng)即, 在遞增,∴解得;
3,當(dāng),即,此時(shí)要求又,
所以,
所以此時(shí)不成立,
綜上或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( , ).
(1)若, ,求函數(shù)的單調(diào)增區(qū)間;
(2)若時(shí),不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng), 時(shí),記函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)是和(),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機(jī)遇,2016年雙11期間,某平臺(tái)的銷售業(yè)績高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門也推出了針對(duì)電商的商品和服務(wù)評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功的交易,并對(duì)其評(píng)價(jià)結(jié)果進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為,對(duì)服務(wù)的好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
在犯錯(cuò)誤概率不超過( )的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)的圖象在處的切線方程為,求, 的值;
(2)若時(shí),函數(shù)在內(nèi)是增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過線段的中點(diǎn)作軸的垂線分別交、于點(diǎn)、,問是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時(shí),求的值域;
(2)若b為正實(shí)數(shù),的最大值為M,最小值為m,且滿足,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2S△ABC=·.
(1)求角B的大;
(2)若b=2,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和曲線的交點(diǎn)為、,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的甲、乙兩個(gè)車間的名工人進(jìn)行了勞動(dòng)技能大比拼,規(guī)定:技能成績大于或等于分為優(yōu)秀, 分以下為非優(yōu)秀,統(tǒng)計(jì)成成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)車間工人中隨機(jī)抽取人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲車間 | |||
乙車間 | |||
合計(jì) |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認(rèn)為“成績與車間有關(guān)系”?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com