【題目】在三棱柱中,底面是邊長(zhǎng)為4的等邊三角形,側(cè)棱垂直于底面,,M是棱AC的中點(diǎn).
(1)求證:平面;
(2)求四棱錐的體積.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)如圖所示,連接,設(shè).連接.由四邊形為矩形,可得,又,利用三角形中位線定理可得.利用線面平行的判定定理即可得出.
(2)取的中點(diǎn),連接.取的中點(diǎn),連接.由于是邊長(zhǎng)為4的等邊三角形,可得,且.利用面面垂直的性質(zhì)定理可得側(cè)面,利用三角形中位線定理與線面垂直的性質(zhì)定理可得側(cè)面,利用四棱錐的體積即可得出.
(1)如圖所示,連接,設(shè).連接.
由四邊形為矩形,,
又,.
平面,平面.
平面.
(2)取的中點(diǎn),連接.取的中點(diǎn),連接.
是邊長(zhǎng)為4的等邊三角形,
,且.
底面側(cè)面,底面側(cè)面,
側(cè)面,
且,
側(cè)面,.
四棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取10個(gè)零件,度量其內(nèi)徑尺寸(單位:).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的內(nèi)徑尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某一天內(nèi)抽取的10個(gè)零件中其內(nèi)徑尺寸在之外的零件數(shù),求及X的數(shù)學(xué)期望;
(2)某天正常工作的一條生產(chǎn)線數(shù)據(jù)記錄的莖葉圖如下圖所示:
①計(jì)算這一天平均值與標(biāo)準(zhǔn)差;
②一家公司引進(jìn)了一條這種生產(chǎn)線,為了檢查這條生產(chǎn)線是否正常,用這條生產(chǎn)線試生產(chǎn)了5個(gè)零件,度量其內(nèi)徑分別為(單位:):95,103,109,112,119,試問(wèn)此條生產(chǎn)線是否需要進(jìn)一步調(diào)試,為什么?
參考數(shù)據(jù):,,
,,,
,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬;將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑。若三棱錐P-ABC為鱉臑,PA⊥面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個(gè)頂點(diǎn)都在球的球面上,則球0的表面積為( )
A. 8πB. 12πC. 20πD. 24π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿意度”與“餐飲滿意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為)
(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;
(3)為提高對(duì)酒店的滿意度,現(xiàn)從且的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿意度”為2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是矩形,,點(diǎn)為的中點(diǎn),與交于點(diǎn).
(Ⅰ)求異面直線與所成角的余弦值;
(Ⅱ)求證:;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為我國(guó)數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有( )
A.360種B.720種C.480種D.420種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在國(guó)家積極推動(dòng)美麗鄉(xiāng)村建設(shè)的政策背景下,各地根據(jù)當(dāng)?shù)厣鷳B(tài)資源打造了眾多特色紛呈的鄉(xiāng)村旅游勝地.某人意圖將自己位于鄉(xiāng)村旅游勝地的房子改造成民宿用于出租,在旅游淡季隨機(jī)選取100天,對(duì)當(dāng)?shù)匾延械牧g不同價(jià)位的民宿進(jìn)行跟蹤,統(tǒng)計(jì)其出租率(),設(shè)民宿租金為(單位:元/日),得到如圖所示的數(shù)據(jù)散點(diǎn)圖.
(1)若用“出租率”近似估計(jì)旅游淡季民宿每天租出去的概率,求租金為388元的那間民宿在淡季內(nèi)的三天中至少有2天閑置的概率.
(2)①根據(jù)散點(diǎn)圖判斷,與哪個(gè)更適合于此模型(給出判斷即可,不必說(shuō)明理由)?根據(jù)判斷結(jié)果求回歸方程;
②若該地一年中旅游淡季約為280天,在此期間無(wú)論民宿是否出租,每天都要付出的固定成本,若民宿出租,則每天需要再付出的日常支出成本.試用①中模型進(jìn)行分析,旅游淡季民宿租金約定為多少元時(shí),該民宿在這280天的收益達(dá)到最大?
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為;.
參考數(shù)據(jù):記,,,,
,,
,,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè),對(duì)任意恒有,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com