10.若f(x)=Asinωx(A>0,ω>0)的部分圖象.
(1)求A,ω的值;
(2)求函數(shù)f(x)的遞增區(qū)間.

分析 (1)由圖象直接求出A和T,利用三角函數(shù)的周期公式可求ω.
(2)利用正弦函數(shù)的單調性即可得解.

解答 解:(1)由圖象知,A=2,T=2($\frac{3π}{2}$-$\frac{π}{2}$)=2π=$\frac{2π}{ω}$.
解得:ω=1.
(2)由(1)可得:f(x)=2sinx,
由正弦函數(shù)的單調性可得函數(shù)的單調遞增區(qū)間為:[2k$π-\frac{π}{2}$,2k$π+\frac{π}{2}$],k∈Z.

點評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的單調性,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,焦距為4,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,已知F1,F(xiàn)2是雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上下焦點,過F2點作以F1為圓心,|OF1|為半徑的圓的切線,P為切點,若切線段PF2被一條漸近線平分,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知△ABC的內角A,B,C滿足sin2A+sin(A-B+C)=sin(C-A-B)+$\frac{1}{2}$,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,給出下列說法:
①bc(b+c)>8②ab(a+b)>16$\sqrt{2}$③6≤abc≤12④12≤abc≤24
其中不正確的是②③④(填出所有符合要求的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.從編號依次為1,2,3….100的個體中,用系統(tǒng)抽樣方法抽取5個個體,則抽出的編號可能為( 。
A.5,15,25,35,45B.25,45,65,85,100C.10,30,50,70,90D.23,33,45,53,63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知點P(cosθ,sinθ)在直線y=2x上,則sin2θ+cos2θ=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,O是BD中點,點P在線段B1D1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是(  )
A.[$\frac{{\sqrt{2}}}{3}$,$\frac{{\sqrt{3}}}{3}$]B.[$\frac{1}{3}$,$\frac{1}{2}$]C.[$\frac{{\sqrt{3}}}{4}$,$\frac{{\sqrt{3}}}{3}$]D.[$\frac{1}{4}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設整數(shù)n≥2,若0<a1≤a2≤a3≤…≤an,a1a2a3…an≤x,求證:a1a2a3…an-1≤x${\;}^{1-\frac{1}{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.拋物線x2-2y-6xsinθ-9cos2θ+8cosθ+9=0的頂點的軌跡是(其中θ∈R)橢圓.

查看答案和解析>>

同步練習冊答案