分析 設(shè)OP與AB相交于C,則AB⊥AP,利用射影定理求出OC,利用勾股定理求出AC,即可得出結(jié)論.
解答 解:設(shè)OP與AB相交于C,則AB⊥AP,
∵OA=2,OP=$\sqrt{10}$,
∵OA2=OC•OP,
∴OC=$\frac{4}{\sqrt{10}}$,
∵AC=$\sqrt{4-\frac{16}{10}}$=$\frac{2\sqrt{15}}{5}$,
∴AB=$\frac{{4\sqrt{15}}}{5}$,
故答案為$\frac{{4\sqrt{15}}}{5}$.
點評 本題考查直線與圓的位置關(guān)系,考查射影定理、勾股定理的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {-2} | C. | {-2,2} | D. | {-2,0,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a}>\frac{1}$ | B. | a2<b2 | C. | a2>b2 | D. | 2a<2b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20n mile | B. | 20$\sqrt{7}$n mile | C. | 30n mile | D. | 30$\sqrt{7}$n mile |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{5π}{4}$ | C. | $-\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | 2 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com