1.已知函數(shù)f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函數(shù)f(x)的最小值,并寫出此時(shí)x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.

分析 (Ⅰ)寫出分段函數(shù),畫圖得答案;
(Ⅱ)由絕對(duì)值的幾何意義,把f(x)≥3恒成立轉(zhuǎn)化為關(guān)于a的含有絕對(duì)值的不等式求解.

解答 解:(Ⅰ)若a=5,f(x)=|x+2|+|x+5|=$\left\{\begin{array}{l}{-2x-7,x<-5}\\{3,-5≤x≤-2}\\{2x+7,x>-2}\end{array}\right.$.
其圖象如圖:

∴f(x)的最小值為3,使f(x)取得最小值的x的集合為{x|-5≤x≤-2};
(Ⅱ)f(x)=|x+2|+|x+a|=|x-(-2)|+|x-(-a)|,
由絕對(duì)值的幾何意義可知,f(x)為數(shù)軸上動(dòng)點(diǎn)x與兩個(gè)定點(diǎn)-2、-a的距離的和,
如圖:

當(dāng)動(dòng)點(diǎn)x與-2重合時(shí),|x-(-2)|最小為0,要使f(x)≥3恒成立,
則|-2-(-a)|≥3,即|a-2|≥3,得a-2≤-3或a-2≥3,
∴a≤-1或a≥5.

點(diǎn)評(píng) 本題考查帶有絕對(duì)值的函數(shù)的應(yīng)用,考查恒成立問題的求解方法,考查分段函數(shù)的應(yīng)用,考查絕對(duì)值的幾何意義,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.觀察數(shù)表:
1234…第一行
2345…第二行
3456…第三行
4567…第四行
第一列第二列第三列第四列
根據(jù)數(shù)表中所反映的規(guī)律,第n+1行與第m列的交叉點(diǎn)上的數(shù)應(yīng)該是m+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=ex+x2-ex,則f′(1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z滿足z(1+i)=4,則|$\overline{z}$|等于( 。
A.2$\sqrt{2}$B.8C.2-2iD.2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.多項(xiàng)式1+x+(1+x)2+(1+x)3+…+(1+x)5的展開式中,x項(xiàng)的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)是定義在R上的偶函數(shù),F(xiàn)(x)=(x+2)3f(x+2)-17,G(x)=-$\frac{17x+33}{x+2}$,若F(x)的圖象與G(x)的圖象的交點(diǎn)分別為(x1,y1),(x2,y2),…(xm,ym),則$\sum_{i=1}^{m}$(xi+yi)=-19m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=e2x-x2-a.
(1)證明f(x)在(-∞,+∞)上為增函數(shù);
(2)當(dāng)a=1時(shí),解不等式f[f(x)]>x;
(3)若f[f(x)-x2-2x]>f(x)在(0,+∞)上恒成立,求a的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.甲、乙兩位打字員在兩臺(tái)電腦上各自輸入A,B兩種類型的文件的部分文字才能使這兩類文件成為成品.已知A文件需要甲輸入0.5小時(shí),乙輸入0.2小時(shí);B文件需要甲輸入0.3小時(shí),乙輸入0.6小時(shí).在一個(gè)工作日中,甲至多只能輸入6小時(shí),乙至多只能輸入8小時(shí),A文件每份的利潤為60元,B文件每份的利潤為80元,則甲、乙兩位打字員在一個(gè)工作日內(nèi)獲得的最大利潤是1200元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2xlnx-x2+2ax,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),求函數(shù)g(x)的極值;
(2)是否存在常數(shù)a,使得x∈[1,+∞)時(shí),f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案