已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn),點(diǎn)
(1)求橢圓C的方程;
(2)已知圓M:x2+(y-5)2=9,雙曲線G與橢圓C有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切,求雙曲線G的方程.
【答案】分析:(1)待定系數(shù)法求橢圓的方程,設(shè)橢圓C的方程為mx2+ny2=1,將點(diǎn),點(diǎn)代入,建立方程組,即可求出橢圓C的方程;
(2)設(shè)出雙曲線方程,利用圓M:x2+(y-5)2=9,雙曲線G與橢圓C有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切,建立兩個(gè)方程,從而可求出雙曲線G的方程.
解答:解:(1)依題意,可設(shè)橢圓C的方程為mx2+ny2=1,…(1分)
從而,解得…(3分)
故橢圓C的方程為…(4分)
(2)橢圓C:的兩焦點(diǎn)為F1(-5,0),F(xiàn)2(5,0),…(5分)
∵雙曲線G與橢圓C有相同的焦點(diǎn),
∴雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,且c=5.…(6分)
設(shè)雙曲線G的方程為(a>0,b>0),則G的漸近線方程為y=±x,…(7分)
即bx±ay=0,且a2+b2=25,
圓M:x2+(y-5)2=9的圓心為(0,5),半徑為r=3.
∵雙曲線G的兩條漸近線恰好與圓M相切

∴a=3,b=4.…(9分)
∴雙曲線G的方程為.…(10分)
點(diǎn)評(píng):本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程,考查待定系數(shù)法,根據(jù)不同條件,設(shè)出方程是我們解答這類問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(3
2
,4)
,點(diǎn)B(
10
,2
5
)

(1)求橢圓C的方程;
(2)已知圓M:x2+(y-5)2=9,雙曲線G與橢圓C有相同的焦點(diǎn),它的兩條漸近線恰好與圓M相切,求雙曲線G的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn),
( I)求橢圓C的方程;
( I I)問是否存在直線l:y=
32
x+t
,使直線l與橢圓C有公共點(diǎn),且原點(diǎn)到直線l的距離為4?若存在,求出l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍的橢圓經(jīng)過(guò)點(diǎn)M=(2,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l平行于OM,且與橢圓交于A、B兩個(gè)不同點(diǎn).
(。┤簟螦OB為鈍角,求直線l在y軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010福建理數(shù))17.(本小題滿分13分)

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案