(本小題14分)在奧運(yùn)會射箭決賽中,參賽號碼為1~4號的四名射箭運(yùn)動員參加射箭比賽。
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運(yùn)動員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運(yùn)動員射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)分別為、.根據(jù)教練員提供的資料,其概率分布如下表:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
0 |
0 |
0 |
0 |
0.06 |
0.04 |
0.06 |
0.3 |
0.2 |
0.3 |
0.04 |
|
0 |
0 |
0 |
0 |
0.04 |
0.05 |
0.05 |
0.2 |
0.32 |
0.32 |
0.02 |
① 若1,2號運(yùn)動員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
② ②判斷1號,2號射箭運(yùn)動員誰射箭的水平高?并說明理由.
(Ⅰ)
(Ⅱ)①p=1-0.476=0.524
②2號射箭運(yùn)動員的射箭水平高.
【解析】本試題主要是考查了古典概型概率的運(yùn)算,以及隨機(jī)變量的分布列的求解和期望值的運(yùn)用。
(1)、4名運(yùn)動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運(yùn)動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運(yùn)動員所抽靶位號與參賽號相同的概率為1/4
(2)由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524,那么利用各個取值概率值表示得到期望值,并比較大小得到水平高低問題。
解(Ⅰ)從4名運(yùn)動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運(yùn)動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運(yùn)動員所抽靶位號與參賽號相同的概率為
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524
②
所以2號射箭運(yùn)動員的射箭水平高.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年山東德州一中高一下學(xué)期模塊檢測數(shù)學(xué)卷 題型:解答題
(本小題14分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知向量,又有點
(1)若,且,求向量;
(2)若向量與向量共線。當(dāng),且函數(shù)取最大值為4,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省揭陽市第一中學(xué)高二上學(xué)期期末檢測數(shù)學(xué)文卷 題型:解答題
(本小題14分)在等比數(shù)列中,,公比,且
,又與的等比中項是2,
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山東德州一中高一下學(xué)期模塊檢測數(shù)學(xué)卷 題型:解答題
(本小題14分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知向量,又有點
(1)若,且,求向量;
(2)若向量與向量共線。當(dāng),且函數(shù)取最大值為4,求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com