已知函數(shù)f(x)=
ax+2
x+2

(1)求證:y=f(x)的圖象恒過定點(diǎn),求該定點(diǎn)坐標(biāo);
(2)若f(x)在(-2,+∞)上為增函數(shù),求a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)將函數(shù)變形為ax+(2-xy-2y)=0恒成立,只有 x=0,2-xy-2y=0,解出即可;(2)先求出函數(shù)的導(dǎo)數(shù),得不等式2a-2>0,解出即可.
解答: 解:(1)∵已知函數(shù)f(x)=
ax+2
x+2

令y=
ax+2
x+2
,∴xy+2y=ax+2
∴ax+(2-xy-2y)=0
要讓上式恒成立
只有 x=0,2-xy-2y=0,解得x=0,y=1,
∴y=f(x)的圖象恒過定點(diǎn)(0,1);
(2)∵f′(x)=
(ax+2)′(x+2)-(ax+2)(x+2)′
(x+2)2
=
2a-2
(x+2)2
,
∴若f(x)在(-2,+∞)上為增函數(shù),只需2a-2>0即可,
解得:a>1.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性問題,考查了等式的恒成立問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,圓C的參數(shù)方程
x=1+cosφ
y=sinφ
為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程是2ρsin(θ+
π
3
)=3
3
,射線OM:θ=
π
3
與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+
1
3
)(m>0)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)g(x)=
1+x
a(1-x)
[xf(x)-1],若對(duì)任意x∈(0,1)恒有g(shù)(x)<-2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x3+ax2+3x+1在定義域R內(nèi)為單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A、[-1,1]
B、[-3,3]
C、[-
3
,
3
]
D、[-
2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)=x2+a丨x-m丨+1(a≠0),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)為單調(diào)函數(shù),且對(duì)任意x∈R,恒有f(f(x)-2x)=-
1
2
,則函數(shù)f(x)的零點(diǎn)是( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
sin(ωx-
π
3
)(ω>0)的圖象在[
π
4
π
2
]
上為增函數(shù),則ω的取值范圍為( 。
A、[
2
3
,
5
3
]
B、[
17
3
,
22
3
]
C、(0,
5
3
]
D、(0,
17
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a2=4,滿足an+2=
5
3
an+1-
2
3
an
,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示(單位cm),則此幾何體的體積為( 。
A、
21
2
cm3
B、
15
2
cm3
C、16cm3
D、12cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案