【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當(dāng)a=﹣ 時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時(shí),若y=f(x)圖象上的點(diǎn)都在 所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

【答案】解:(Ⅰ)當(dāng)a=﹣ 時(shí),f(x)=﹣ x2+ x+lnx+
f(x)的定義域?yàn)椋?,+∞),f′(x)=﹣ ;
列表討論f′(x)和f(x)的變化情況:

x

(0,2)

2

(2,+∞)

f′(x)

+

0

f(x)

極大值

∴當(dāng)x=2時(shí),f(x)取得極大值f(2)=ln2+ ;
(Ⅱ)當(dāng)a>0時(shí),g(x)=ax2﹣(2a+1)x+lnx+a+1,
g(x)的定義域?yàn)椋?,+∞),
g′(x)= ,
令g′(x)=0,得x=1或x=
①當(dāng)0<a< ,即 >1時(shí),
由g′(x)<0,解得:1<x< ,
由g′(x)>0,解得:0<x<1或x>
∴g(x)在(1, )上單調(diào)遞減,
在(0,1),( ,+∞)上單調(diào)遞增;
②當(dāng)a= ,即 =1時(shí),在(0,+∞)上,g′(x)≥0,
∴g(x)在(0,+∞)上單調(diào)遞增;
③當(dāng)a> ,即0< <1時(shí),
由g′(x)<0,解得 <x<1,由g′(x)>0,解得0<x< 或x>1,
∴g(x)在( ,1)上單調(diào)遞減,
在(0, ),(1,+∞)上單調(diào)遞增.
(Ⅲ)∵y=f(x)圖象上的點(diǎn)都在 所表示的平面區(qū)域內(nèi),
∴當(dāng)x∈[1,+∞)時(shí),f(x)﹣x≤0恒成立,
即當(dāng)x∈[1,+∞)時(shí),g(x)=a(x﹣1)2+lnx+1﹣x≤0恒成立.
只需g(x)max≤0;
①當(dāng)a>0時(shí),由(Ⅱ)知,
當(dāng)0<a< 時(shí),g(x)在(1, )上單調(diào)遞減,在( ,+∞)上單調(diào)遞增,
∴g(x)在[1,+∞)上無(wú)最大值,不滿足條件;
當(dāng)a≥ 時(shí),g(x) 在(1,+∞)上單調(diào)遞增,
∴g(x)在[1,+∞)上無(wú)最大值,不滿足條件;
②當(dāng)a=0時(shí),g′(x)=﹣ ,在(1,+∞)上,g′(x)<0,
∴g(x)在[1,+∞)上單調(diào)遞減,g(x)≤g(1)=0成立;
③當(dāng)a<0時(shí),g′(x)= ,在(1,+∞)上,g′(x)<0,
∴g(x)在[1,+∞)上單調(diào)遞減,g(x)≤g(1)=0成立,
綜上可知,實(shí)數(shù)a的取值范圍是a≤0
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極大值即可;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅲ)問(wèn)題轉(zhuǎn)化為x∈[1,+∞)時(shí),g(x)=a(x﹣1)2+lnx+1﹣x≤0恒成立,只需g(x)max≤0即可,根據(jù)函數(shù)的單調(diào)性求出a的范圍.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問(wèn):米幾何?”如圖所示的是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的(單位:升),則輸入的值為( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋中裝有6個(gè)黑球,4個(gè)白球.如果不放回地依次取出2個(gè)球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的條件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,最小值為4的是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對(duì)任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,CA=CB=2,M,N是斜邊AB上的兩個(gè)動(dòng)點(diǎn),且MN= ,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)).若直線分別與圓和圓交于不同于原點(diǎn)的點(diǎn)

(1)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,求圓和圓的極坐標(biāo)方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: =1(a>b>0)的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿足 ,(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點(diǎn),A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點(diǎn)B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案