分析 (1)根據(jù)切線的性質(zhì)可知圓半徑為3,從而得出圓的方程;
(2)利用垂徑定理得出圓心到直線l的距離,再根據(jù)點(diǎn)到直線的距離列方程解出k.
解答 解:(1)圓的半徑r=3,
∴圓的方程為(x+1)2+(y+3)2=9,
(2)由垂徑定理可知圓心C(-1,-3)到直線l的距離d=$\sqrt{{r}^{2}-(\frac{2\sqrt{7}}{2})^{2}}$=$\sqrt{2}$,
∴$\frac{|-k+3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,解得k=1或k=-7.
點(diǎn)評 本題考查了圓的方程,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | [-2,+∞) | C. | (-∞,-2) | D. | (-∞,-2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{3}{4}π,\frac{π}{4}]$ | B. | [-π,0] | C. | $[-\frac{π}{4},\frac{3}{4}π]$ | D. | $[-\frac{π}{2},\frac{π}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{15}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外接球的體積為12$\sqrt{3}$ π | B. | 外接球的表面積為4π | ||
C. | 體積為$\sqrt{2}$ | D. | 表面積為$\sqrt{5}$+$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com