20.已知圓C的圓心為(-1,-3),且它與x軸相切.
(1)求圓的方程;
(2)若圓C被直線l:y=kx截得的弦長為$2\sqrt{7}$,求k的值.

分析 (1)根據(jù)切線的性質(zhì)可知圓半徑為3,從而得出圓的方程;
(2)利用垂徑定理得出圓心到直線l的距離,再根據(jù)點(diǎn)到直線的距離列方程解出k.

解答 解:(1)圓的半徑r=3,
∴圓的方程為(x+1)2+(y+3)2=9,
(2)由垂徑定理可知圓心C(-1,-3)到直線l的距離d=$\sqrt{{r}^{2}-(\frac{2\sqrt{7}}{2})^{2}}$=$\sqrt{2}$,
∴$\frac{|-k+3|}{\sqrt{{k}^{2}+1}}$=$\sqrt{2}$,解得k=1或k=-7.

點(diǎn)評 本題考查了圓的方程,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,某污水處理廠要在一個矩形ABCD的池底水平鋪設(shè)污水凈化管道(直角△EFG,E是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好,設(shè)計要求管道的接口E是AB的中點(diǎn),F(xiàn)、G分別落在AD、BC上,且AB=20m,$AD=10\sqrt{3}m$,設(shè)∠GEB=θ.
(1)試將污水管道的長度l表示成θ的函數(shù),并寫出定義域;
(2)當(dāng)θ為何值時,污水凈化效果最好,并求此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線y=2x上存在點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,則實(shí)數(shù)m的取值范圍是( 。
A.(-2,+∞)B.[-2,+∞)C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$y=sin(x+\frac{π}{4})$在閉區(qū)間(  )上為增函數(shù).
A.$[-\frac{3}{4}π,\frac{π}{4}]$B.[-π,0]C.$[-\frac{π}{4},\frac{3}{4}π]$D.$[-\frac{π}{2},\frac{π}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow$=$({\sqrt{3}cosx,-\frac{1}{2}})$.函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$-2.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C 的對邊,其中A為銳角,a=2$\sqrt{3}$,c=4,且f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)隨機(jī)變量X的分布列為P(X=k)=$\frac{k}{25}$,k=1,2,3,4,5,則P($\frac{1}{2}$<X<$\frac{5}{2}$)等于( 。
A.$\frac{2}{15}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則這個幾何體的(  )
A.外接球的體積為12$\sqrt{3}$ πB.外接球的表面積為4π
C.體積為$\sqrt{2}$D.表面積為$\sqrt{5}$+$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,一個簡單空間幾何體的三視圖其主視圖與左視圖都是邊長為2的正三角形,其俯視圖輪廓為正方形,則其體積是$\frac{4\sqrt{3}}{3}$,表面積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為$5{cos^2}θ+9{sin^2}θ=\frac{45}{ρ^2}$,且直線l經(jīng)過橢圓C的右焦點(diǎn)F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點(diǎn),求|FA|•|FB|的值.

查看答案和解析>>

同步練習(xí)冊答案