分析 (1)把a(bǔ)=e代入函數(shù)解析式,求出導(dǎo)函數(shù)的零點(diǎn),可得原函數(shù)在[0,1]上單調(diào)遞減,在(1,2]上單調(diào)遞增,結(jié)合f(2)-f(0)>0,可得函數(shù)y=f(x)在區(qū)間x∈[0,2]上的最大值;
(2)求出原函數(shù)的導(dǎo)函數(shù),分0<a<1和a>1求得原函數(shù)的最小值,由最小值等于0求得a值.
解答 解:(1)當(dāng)a=e時,f(x)=ex-e(x+1)lne-$\frac{1}{e}$=ex-e(x+1)-$\frac{1}{e}$,
∴f′(x)=ex-e,
令f′(x)=0,解得x=1,
當(dāng)x∈[0,1]時,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)x∈(1,2]時,f′(x)>0,函數(shù)f(x)單調(diào)遞增,
∵f(0)=1-e-$\frac{1}{e}$,f(2)=e2-3e-$\frac{1}{e}$,
∴f(2)-f(0)=e2-3e-$\frac{1}{e}$-1+e+$\frac{1}{e}$=e2-2e-1>0,
∴函數(shù)y=f(x)在區(qū)間x∈[0,2]上的最大值為e2-3e-$\frac{1}{e}$;
(2)f′(x)=axlna-elna=lna(ax-e),
當(dāng)0<a<1時,由f′(x)=axlna-elna=lna(ax-e)<0,得ax-e>0,即x$<\frac{1}{lna}$.
由f′(x)=axlna-elna=lna(ax-e)>0,得ax-e<0,即x$>\frac{1}{lna}$.
∴f(x)在(-∞,$\frac{1}{lna}$)上為減函數(shù),在($\frac{1}{lna}$,+∞)上為增函數(shù),
∴當(dāng)x=$\frac{1}{lna}$時函數(shù)取得最小值為f($\frac{1}{lna}$)=${a}^{\frac{1}{lna}}-e(\frac{1}{lna}+1)lna-\frac{1}{a}$=${a}^{\frac{1}{lna}}-elna-e-\frac{1}{a}$.
要使函數(shù)f(x)只有一個零點(diǎn),則${a}^{\frac{1}{lna}}-elna-e-\frac{1}{a}=0$,得a=$\frac{1}{e}$;
當(dāng)a>1時,由f′(x)=axlna-elna=lna(ax-e)<0,得ax-e<0,即x$<\frac{1}{lna}$.
由f′(x)=axlna-elna=lna(ax-e)>0,得ax-e>0,即x$>\frac{1}{lna}$.
∴f(x)在(-∞,$\frac{1}{lna}$)上為減函數(shù),在($\frac{1}{lna}$,+∞)上為增函數(shù),
∴當(dāng)x=$\frac{1}{lna}$時函數(shù)取得最小值為f($\frac{1}{lna}$)=${a}^{\frac{1}{lna}}-e(\frac{1}{lna}+1)lna-\frac{1}{a}$=${a}^{\frac{1}{lna}}-elna-e-\frac{1}{a}$.
要使函數(shù)f(x)只有一個零點(diǎn),則${a}^{\frac{1}{lna}}-elna-e-\frac{1}{a}=0$,得a=$\frac{1}{e}$(舍).
綜上,若函數(shù)f(x)只有一個零點(diǎn),則a=$\frac{1}{e}$.
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)的判定,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法和分類討論的數(shù)學(xué)思想方法,是壓軸題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
P(K2≥k0) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{8}$ | B. | $-\frac{7}{8}$ | C. | $-\frac{5}{8}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x±y=0 | B. | x±$\frac{\sqrt{3}}{3}$y=0 | C. | x±$\frac{\sqrt{2}}{2}$y=0 | D. | x±2y=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com