(08年正定中學(xué)一模理) (12分) 已知橢圓的離心率為,直線:與以原點(diǎn)為圓心,以橢圓C1的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線過點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn)P,線段PF2垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(3)設(shè)C2與x軸交于點(diǎn)Q,不同的兩點(diǎn)R,S在C2上,且滿足,求的取值范圍.
解析:(1),
∵直線l:x-y+2=0與圓x2+y2=b2相切,∴=b,∴b=,b2=2,∴a3=3.
∴橢圓C1的方程是
………………….(3分)
(2)∵MP=MF,
∴動(dòng)點(diǎn)M到定直線l1:x=-1的距離等于它的定點(diǎn)F2(1,0)的距離,
∴動(dòng)點(diǎn)M的軌跡是以l1為準(zhǔn)線,F2為焦點(diǎn)的拋物線,
∴點(diǎn)M的軌跡C2的方程為。 …………………………….(7分)
(3)Q(0,0),設(shè),
,
由得 ,
,化簡(jiǎn)得,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
,又∵y22≥64,
∴當(dāng).
故的取值范圍是.………………………….(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年正定中學(xué)一模)(10分) 已知△ABC中,AB=4,AC=2,.
(1)求△ABC外接圓面積.
(2)求cos(2B+)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年正定中學(xué)一模理)(12分) 2008年北京奧運(yùn)會(huì)乒乓球比賽將產(chǎn)生男子單打、女子單打、男子團(tuán)體、女子團(tuán)體共四枚金牌,保守估計(jì)中國(guó)乒乓球男隊(duì)獲得每枚金牌的概率均為,中國(guó)乒乓球女隊(duì)一枚金牌的概率均為
(1)求按此估計(jì)中國(guó)乒乓球女隊(duì)比中國(guó)乒乓球男隊(duì)多獲得一枚金牌的概率;
(2)記中國(guó)乒乓球隊(duì)獲得金牌的數(shù)為,按此估計(jì)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年正定中學(xué)一模理) (12分) 已知函數(shù)的圖象在x=2處的切線互相平行.
(1)求t的值.
(2)設(shè)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年正定中學(xué)一模理) (12分)
設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N+,都有,記Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若(為非零常數(shù),n∈N+),問是否存在整數(shù),使得對(duì)任意 n∈N+,都有bn+1>bn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年正定中學(xué)一模文)(12分)
數(shù)列的前n項(xiàng)為,N.
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com