14.設(shè)復(fù)數(shù)z滿足關(guān)系z•i=-1+$\frac{3}{4}$i,那么z=$\frac{3}{4}$+i.

分析 根據(jù)復(fù)數(shù)的代數(shù)形式運算法則,求出z即可.

解答 解:復(fù)數(shù)z滿足關(guān)系z•i=-1+$\frac{3}{4}$i,
∴z=$\frac{-1+\frac{3}{4}i}{i}$=$\frac{-i+{\frac{3}{4}i}^{2}}{{i}^{2}}$=$\frac{3}{4}$+i.
故答案為:$\frac{3}{4}$+i.

點評 本題考查了復(fù)數(shù)代數(shù)形式的運算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合S={1,2},設(shè)S的真子集有m個,則m=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長度大于1米,且AC比AB長0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( 。
A.(1+$\frac{\sqrt{3}}{2}$)米B.2米C.(1+$\sqrt{3}$)米D.(2+$\sqrt{3}$)米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+3x+b(a,b∈R).
(Ⅰ)當(dāng)a=2,b=0時,求f(x)在[0,3]上的值域.
(Ⅱ)對任意的b,函數(shù)g(x)=|f(x)|-$\frac{2}{3}$的零點不超過4個,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{a}$=(-1,3)與$\overrightarrow$=(0,6),求5$\overrightarrow{a}$-2$\overrightarrow$的坐標(biāo),并求|5$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)滿足:f(x+1)=$\sqrt{f(x){-f}^{2}(x)}+\frac{1}{2}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項和為-$\frac{35}{16}$,則n的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,求$\frac{{S}_{△OBC}}{{S}_{△ABC}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):①f(x)=sinx,②f(x)=cosx,③f(x)=$\frac{1}{x}$,④f(x)=lg$\frac{1-x}{1+x}$,則輸出的函數(shù)是( 。
A.f(x)=sinxB.f(x)=cosxC.f(x)=$\frac{1}{x}$D.f(x)=lg$\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$若方程f(-x)=f(x)有五個不同的根,則實數(shù)a的取值范圍為( 。
A.(-∞,-e)B.(-∞,-1)C.(1,+∞)D.(e,+∞)

查看答案和解析>>

同步練習(xí)冊答案