2.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(1,3),且(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$.
(1)求向量$\overrightarrow{a}$的坐標(biāo);  
(2)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角.

分析 (1)設(shè)出$\overrightarrow{a}$的坐標(biāo),由已知列關(guān)于$\overrightarrow{a}$的坐標(biāo)的方程組,求解方程組得答案;
(2)直接由數(shù)量積公式求得向量$\overrightarrow{a}$與$\overrightarrow$的夾角.

解答 解:(1)設(shè)$\overrightarrow{a}=(m,n)$,∵$\overrightarrow$=(1,3),
∴2$\overrightarrow{a}$+$\overrightarrow$=(2m+1,2n+3),又|$\overrightarrow{a}$|=$\sqrt{5}$,(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$.
∴$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}=5}\\{1×(2m+1)+3(2n+3)=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=-2}\\{n=-1}\end{array}\right.$或$\left\{\begin{array}{l}{m=1}\\{n=-2}\end{array}\right.$.
∴$\overrightarrow{a}=(-2,-1)$或$\overrightarrow{a}=(1,-2)$;
(2)平面內(nèi)向量夾角的θ的取值范圍是θ∈[0,π].
∵$\overrightarrow$=(1,3),∴$|\overrightarrow|=\sqrt{10}$,
當(dāng)$\overrightarrow{a}=(-2,-1)$時,
cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{-2×1-1×3}{\sqrt{5}×\sqrt{10}}=-\frac{\sqrt{2}}{2}$,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為135°;
當(dāng)$\overrightarrow{a}=(1,-2)$時,
cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{1×1-2×3}{\sqrt{5}×\sqrt{10}}=-\frac{\sqrt{2}}{2}$,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為135°.

點(diǎn)評 本題考查平面向量的坐標(biāo)運(yùn)算,考查了由數(shù)量積求斜率的夾角,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是由4個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的內(nèi)角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則tanθ的值是( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知實(shí)數(shù)a滿足不等式|a+2|<2,解關(guān)于x的不等式(ax+1)(x-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線$\left\{\begin{array}{l}x=-2-tcos{30°}\\ y=3+tsin{30°}\end{array}\right.$(t為參數(shù))的傾斜角θ等于( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,矩形OABC的邊長OA=a,OC=1,點(diǎn)A,C分別在x,y正半軸上,D在AC上,$\overrightarrow{CD}$=$\frac{1}{4}$$\overrightarrow{CA}$,直線l垂直AC于D,且交直線BC于點(diǎn)E,交y軸于點(diǎn)F.
(1)寫出AC中點(diǎn)及D坐標(biāo)(用a表示);
(2)若直線l交y軸于負(fù)半軸,求a的取值范圍;
(3)若直線l交y軸于正半軸,且l分矩形兩部分的面積之比是2:7,求|CE|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\overrightarrow{m}$=(1,1),$\overrightarrow{m}$•$\overrightarrow{n}$=-1,且$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{3π}{4}$,
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow{q}$=(1,0),且$\overrightarrow{n}$與$\overrightarrow{q}$的夾角為$\frac{π}{2}$,$\overrightarrow{p}$=(cosA,1+cosC),其中A、B、C為△ABC的內(nèi)角,A、B、C依次成等差數(shù)列,求|$\overrightarrow{n}$+$\overrightarrow{p}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z1=(a-1)+(2-a)i,z2=2a-1+(1-2a)i(其中i為虛數(shù)單位,a∈R),若z1+z2為實(shí)數(shù).
(1)求實(shí)數(shù)a的值;
(2)求z1z2+z12016+z22的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則f(-$\frac{3π}{4}$)=(  )
A.0B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若k,m,p為整數(shù),且2×4k-p=4m-p+1,求證:m=p=k.

查看答案和解析>>

同步練習(xí)冊答案