在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,的中點.

(Ⅰ) 求證://平面
(Ⅱ) 在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

(1)證明線面平行則根據(jù)線面平行的判定定理來證明
(2) 上存在點,使二面角的大小為,此時的長為

解析試題分析:由于四邊形是菱形,的中點, ,
所以為等邊三角形,可得.又是矩形,平面⊥平面
所以⊥平面.如圖建立空間直角坐標系   5分

,,.
,.……7分
設(shè)平面的法向量為.
,所以
.所以.   9分
又平面的法向量,   10分
所以.    11分
,解得.所以在線段
上存在點,使二面角的大小為,此時的長為. 12分.
考點:線面平行,二面角的平面角
點評:主要是考查了空間中的線面平行的證明,以及二面角的求解的運用,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是正方形,⊥平面,,、分別為、的中點,且.

(1)求證:平面⊥平面;
(2)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,菱形的邊長為6,,.將菱形沿對角線折起,得到三棱錐 ,點是棱的中點,.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.

(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱柱中,平面,底面是邊長為1的正方形,側(cè)棱,


(Ⅰ)證明:;
(Ⅱ)若棱上存在一點,使得,
當二面角的大小為時,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在正方體ABCD—A1B1C1D1中,E、F分別為棱BB1和DD1的中點.

(1)求證:平面B1FC//平面ADE;
(2)試在棱DC上取一點M,使平面ADE;
(3)設(shè)正方體的棱長為1,求四面體A­1—FEA的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是一個直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點O是AB的中點。

(1)證明:OC∥平面A1B1C1
(2)求異面直線OC與AlBl所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在多面體中,四邊形是邊長為2的正方形,平面平面,平面都與平面垂直,且、都是正三角形。

(1)求證:
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在正方體,分別是的中點,在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

同步練習冊答案