an(nN*)an(nZ)的本質(zhì)區(qū)別是什么?

答案:
解析:

an(nN*)表示n個(gè)相同的數(shù)a的乘積,而an(nZ)不表示n個(gè)相同因式的乘積,它是一種指數(shù)冪的形式,兩個(gè)式子都是指數(shù)冪,但后一個(gè)的冪指數(shù)范圍擴(kuò)大到了任意整數(shù),冪底數(shù)的范圍縮小到底不為零


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
數(shù)列{an}滿(mǎn)足an=f(n)(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)x軸、直線(xiàn)x=a與函數(shù)y=f(x)的圖象所圍成的封閉圖形的面積為S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整數(shù)N,使得不等式an-1005>S(n)-S(n-1)對(duì)一切n>N恒成立?若存在,則這樣的正整數(shù)N共有多少個(gè)?并求出滿(mǎn)足條件的最小的正整數(shù)N;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x=-2n-1,n∈N*},B={x|x=-6n+3,n∈N*},設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若{an}的任一項(xiàng)an∈A∩B,首項(xiàng)a1是A∩B中的最大數(shù),且-750<S10<-300.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿(mǎn)足bn=(
2
2
)an+13n-9
,令Tn=24(b2+b4+b6+…+b2n),試比較Tn
48n
2n+1
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2000•上海)在xoy平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對(duì)每個(gè)自然數(shù)n,點(diǎn)Pn位于函數(shù)y=2000(
a10
)x
,(0<a<10)的圖象上,且點(diǎn)Pn、點(diǎn)(n,0)與點(diǎn)(n+1,0)構(gòu)成一個(gè)以Pn為頂點(diǎn)的等腰三角形.
(Ⅰ)求點(diǎn)Pn的縱坐標(biāo)bn的表達(dá)式;
(Ⅱ)若對(duì)每個(gè)自然數(shù)n,以bn,bn+1,bn+2為邊長(zhǎng)能構(gòu)成一個(gè)三角形,求a的取值范圍;
(Ⅲ)設(shè)Cn=lg(bn),n∈N*,若a取(Ⅱ)中確定的范圍內(nèi)的最小整數(shù),問(wèn)數(shù)列{Cn}前多少項(xiàng)的和最大?試說(shuō)明理由.(lg2=0.3010,lg7=0.8450)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、文科數(shù)學(xué)(北京卷) 題型:044

已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i={1,2,…,n}(n≥2)對(duì)于A=(a1,a2,…an),B=(b1,b2,…bn)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2||,…|an-bn|);A與B之間的距離為d(A,B)=|a1-b1|

(Ⅰ)當(dāng)n=5時(shí),設(shè)A=(0,1,0,0,1),B=(1,1,1,0,0),求A-B,d(A,B);

(Ⅱ)證明:A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);

(Ⅲ)證明:A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個(gè)數(shù)中至少有一個(gè)是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知曲線(xiàn)C:f(x)=x2,C上點(diǎn)A、An的橫坐標(biāo)分別為1和an(n∈N*),且a1=5,xn+1=af(xn-1)+1(a>0,a≠,a≠1).記區(qū)間Dn=[1,an](an>1).當(dāng)x∈Dn時(shí),曲線(xiàn)C上存在點(diǎn)Pn(xn,f(xn)),使得點(diǎn)Pn處的切線(xiàn)與直線(xiàn)AAn平行.

(1)試判斷:數(shù)列{loga(xn-1)+1}是什么數(shù)列;

(2)當(dāng)DnDn+1對(duì)一切n∈N*恒成立時(shí),求實(shí)數(shù)a的取值范圍;

(3)記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)a=時(shí),試比較Sn與n+7的大小,并說(shuō)明你的結(jié)論.

(文)已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn).若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.

(1)求c的值.

(2)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x0,y0),使得f(x)在點(diǎn)M處的切線(xiàn)斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)求|AC|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案