14.在△ABC中,a=7,b=8,c=5,則∠A=$\frac{π}{3}$.

分析 由已知利用余弦定理可求cosA的值,結(jié)合A的范圍即可得解.

解答 解:∵a=7,b=8,c=5,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{64+25-49}{2×8×5}$=$\frac{1}{2}$,
∴由A∈(0,π),可得A=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點評 本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點F,A是橢圓C:$\frac{x^2}{16}+\frac{y^2}{12}=1$的左焦點和上頂點,若點P是橢圓C上一動點,則△PAF周長的最大值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=4sinxcos({x-\frac{π}{3}})-\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期、零點;
(Ⅱ)求f(x)在區(qū)間$[{\frac{π}{24},\frac{3π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知z=(a-2)+(a+1)i在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)a的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項和為Sn.若對?n∈N*,總?k∈N*,使得Sn=ak,則稱數(shù)列{an}是“G數(shù)列”.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項a1=1,公差d=-1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說明理由;
(Ⅲ)證明:對任意的等差數(shù)列{an},總存在兩個“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足:a1=1,an+1=2an,數(shù)列{bn}滿足:b1=3,b4=11,且{an+bn}為等差數(shù)列.
(I) 求數(shù)列{an}和{bn}的通項公式;
(II) 求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為600件、400件、300件,用分層抽樣方法抽取容量為n的樣本,若從丙車間抽取6件,則n的值為(  )
A.18B.20C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.△ABC中,角A,B,C所對的邊分別為a,b,c,已知c=$\sqrt{7}$,C=$\frac{π}{3}$,
(Ⅰ)若2sinA=3sinB,求a,b;
(Ⅱ)若cosB=$\frac{5\sqrt{7}}{14}$,求sin2A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,\sqrt{3}sin2x)$,$\overrightarrow b=(cosx,1)$,x∈R.
(1)求函數(shù)y=f(x)的周期和單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=2,$a=\sqrt{7}$,且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案