已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
( 1 ) 證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

(1)根據(jù)遞推關(guān)系分析可知,兩邊取對數(shù)來得到證明。
(2)
(3),并根據(jù)上面的結(jié)論來得到證明

解析試題分析:(1)證明:由已知
 兩邊取對數(shù)得,即
是公比為2的等比數(shù)列。
(2)解:由(1)知

=
(3

 
考點(diǎn):數(shù)列的求和
點(diǎn)評:主要是考查了數(shù)列的求和的運(yùn)用,以及等比數(shù)列的定義的運(yùn)用,屬于難度試題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)同時(shí)滿足:①不等式 的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立 設(shè)數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號數(shù),令為正整數(shù)),求數(shù)列的變號數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足,且.
(1)求
(2)是否存在實(shí)數(shù)t,使得,且{}為等差數(shù)列?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于給定數(shù)列,如果存在實(shí)常數(shù)使得對于任意都成立,我們稱數(shù)列是“數(shù)列”.
(Ⅰ)若,,,數(shù)列、是否為“數(shù)列”?若是,指出它對應(yīng)的實(shí)常數(shù),若不是,請說明理由;
(Ⅱ)證明:若數(shù)列是“數(shù)列”,則數(shù)列也是“數(shù)列”;
(Ⅲ)若數(shù)列滿足,為常數(shù).求數(shù)列項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對任意正整數(shù),點(diǎn)都在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若設(shè)求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足
(1)設(shè)是公差為的等差數(shù)列.當(dāng)時(shí),求的值;
(2)設(shè)求正整數(shù)使得一切均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列在拋物線上;數(shù)列中,點(diǎn)在過點(diǎn)(0,1),以為斜率的直線上。
(1)求數(shù)列的通項(xiàng)公式;
(2)若成立,若存在,求出k值;若不存在,請說明理由;
(3)對任意正整數(shù),不等式恒成立,求正數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列{}中,,且,
(1)求的值;
(2)猜測數(shù)列{}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上是增函數(shù)
(1)求實(shí)數(shù)的取值集合
(2)當(dāng)取值集合中的最小值時(shí), 定義數(shù)列;滿足, , 設(shè), 證明:數(shù)列是等比數(shù)列, 并求數(shù)列的通項(xiàng)公式.
(3)若, 數(shù)列的前項(xiàng)和為, 求.

查看答案和解析>>

同步練習(xí)冊答案