2.討論函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{x+1,x>0}\end{array}\right.$,在x=0處的連續(xù)性.

分析 分別計算f(x)在0左右兩側(cè)的極限和導數(shù),判斷兩邊是否相等得出結(jié)論.

解答 解:f(0)=0,
當x→0+時,f(x)→1,當x→0-時,f(x)→0.
$\underset{lim}{n→{0}^{+}}$f(x)≠$\underset{lim}{x→{0}^{-}}$f(x),
∴f(x)在x=0處的不連續(xù).

點評 本題考查了函數(shù)的連續(xù)性,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.半圓C(圓心為點C)的極坐標方程為ρ=2sinθ,θ∈($\frac{π}{4}$,$\frac{3π}{4}$).
(Ⅰ)求半圓C的參數(shù)方程;
(Ⅱ)直線l與兩坐標軸的交點分別為A,B,其中A(0,-2),點D在半圓C上,且直線CD的傾斜角是直線l傾斜角的2倍,若△ABD的面積為4,求點D的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$-2mlnx(m∈R),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在直角梯形ABCD中,AB∥DC,AD⊥AB,DC=3,AB=2,AD=1,AE=EB,DF=1,現(xiàn)把它沿FE折起,得到如圖所示幾何體,連接DB,AB,DC,使DC=$\sqrt{5}$,
(1)求證:面DBC⊥面DFB;
(2)判斷是否在DC上存在一點H,使二面角E-BH-C的余弦值為-$\frac{{\sqrt{30}}}{6}$,若存在,確定點H的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖是一個幾何體的三視圖(單位:cm),則這個幾何體的表面積是$18+2\sqrt{3}$cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知P為函數(shù)y=ln(2x-1)圖象上的一個動點,Q為函數(shù)y=2x+3圖象上一個動點,則|PQ|2最小值=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.把4封不同的信投進5個不同的郵箱中,則總共投法的種數(shù)為(  )
A.20B.$A_5^4$C.45D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若兩直線3x+4y+3=0與6x+my+1=0平行,則它們之間的距離為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{2}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.乒乓球比賽采用7局4勝制,若甲、乙兩人實力相當,獲勝的概率各占一半,則打完5局后仍不能結(jié)束比賽的概率等于$\frac{5}{8}$.

查看答案和解析>>

同步練習冊答案