17.如圖是一個(gè)幾何體的三視圖(單位:cm),則這個(gè)幾何體的表面積是$18+2\sqrt{3}$cm2

分析 由三視圖知該幾何體是直三棱柱,由三視圖求出幾何體的棱長(zhǎng)、并判斷幾何體的結(jié)構(gòu)特征,由面積公式求出各個(gè)面的面積,加起來求出幾何體的表面積.

解答 解:根據(jù)三視圖可知幾何體是一個(gè)直三棱柱,
由側(cè)視圖知,底面是邊長(zhǎng)為2cm的等邊三角形,邊上的高是$\sqrt{3}$cm,
且側(cè)棱與底面垂直,側(cè)棱長(zhǎng)是3cm,
∴該幾何體的表面積S=$2×\frac{1}{2}×2×\sqrt{3}+3×2×3$
=$18+2\sqrt{3}$(cm2),
故答案為:$18+2\sqrt{3}$.

點(diǎn)評(píng) 本題考查由三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某四面體的三視圖如圖所示,正視圖、俯視圖都是腰長(zhǎng)為2的等腰直角三角形,側(cè)視圖是邊長(zhǎng)為2的正方形,則此四面體的外接球的體積是( 。
A.12πB.48πC.4$\sqrt{3}$πD.32$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)=x2+cosx,則三個(gè)數(shù)a=f(1),b=f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),c=f(log2$\frac{\sqrt{2}}{2}$)的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,
①求a、b的值;
②解不等式f(x)>4.
(2)若a=1,c=0,且-1≤f(x)≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱錐P-ABC中,PA⊥底面ABC,點(diǎn)D,E分別在棱PB、PC上,PA=AB=2,∠ABC=60°,∠BCA=90°,且DE∥BC.
(Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)當(dāng)點(diǎn)D為PB的中點(diǎn)時(shí),求AD與平面PAC所成角的正切值;
(Ⅲ)是否存在點(diǎn)E使得二面角A-DE-P為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.討論函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{x+1,x>0}\end{array}\right.$,在x=0處的連續(xù)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.8B.24C.18+2$\sqrt{3}$D.12+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有8人參加某次競(jìng)賽,分別錄取第一名至第六名各一人,則不同選法共有( 。
A.A${\;}_{8}^{6}$種B.C${\;}_{8}^{6}$種C.6C${\;}_{8}^{1}$種D.6C${\;}_{8}^{6}$種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{y^2}{a^2}$-$\frac{x^2}{7}$=1(a>0)的一個(gè)焦點(diǎn)與拋物線y=$\frac{1}{16}$x2的焦點(diǎn)重合,則實(shí)數(shù)a=( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案