分析 (1)當(dāng)n=1時,(a1+1)(a2+1)=6(S1+1),故a2=5;當(dāng)n≥2時,(an-1+1)(an+1)=6(Sn-1+n-1),
可得(an+1)(an+1-an-1)=6(an+1),因此an+1-an-1=6,分奇數(shù)偶數(shù)即可得出.
(2)當(dāng)n為奇數(shù)時,${S_n}=\frac{1}{6}(3n+a-2)(3n+3)-n$,由Sn≤n(3n+1)得,$a≤\frac{{3{n^2}+3n+2}}{n+1}$恒成立,利用單調(diào)性即可得出.當(dāng)n為偶數(shù)時,${S_n}=\frac{1}{6}•3n(3n+a+1)-n$,由Sn≤n(3n+1)得,a≤3(n+1)恒成立,即可得出.
(3)證明:當(dāng)a=2時,若n為奇數(shù),則an=3n-1,所以an=3n-1.
解法1:令等比數(shù)列{bn}的公比q=4m(m∈N*),則${b_n}={b_1}{q^{n-1}}=5×{4^{m(n-1)}}$.
設(shè)k=m(n-1),可得5×4m(n-1)=5×[3(1+4+42+…+4k-1)+1],=3[5(1+4+42+…+4k-1)+2]-1,….因為5(1+4+42+…+4k-1)+2為正整數(shù),可得數(shù)列{bn}是數(shù)列{an}中包含的無窮等比數(shù)列,進(jìn)而證明結(jié)論.
解法2:設(shè)${b_2}={a_{k_2}}=3{k_2}-1({k_2}≥3)$,所以公比$q=\frac{{3{k_2}-1}}{5}$.因為等比數(shù)列{bn}的各項為整數(shù),所以q為整數(shù),
取${k_2}=5m+2(m∈{N^*})$,則q=3m+1,故${b_n}=5•{(3m+1)^{n-1}}$,由$3{k_n}-1=5•{(3m+1)^{n-1}}$得,${k_n}=\frac{1}{3}[5{(3m+1)^{n-1}}+1](n∈{N^*})$,n≥2時,${k_n}={k_{n-1}}+5m{(3m+1)^{n-2}}$,可得kn是正整數(shù),因此以數(shù)列{bn}是數(shù)列{an}中包含的無窮等比數(shù)列,即可證明.
解答 解:(1)當(dāng)n=1時,(a1+1)(a2+1)=6(S1+1),故a2=5;
當(dāng)n≥2時,(an-1+1)(an+1)=6(Sn-1+n-1),
所以(an+1)(an+1+1)-(an-1+1)(an+1)=6(Sn+n)-6(Sn-1+n-1),
即(an+1)(an+1-an-1)=6(an+1),
又an>0,所以an+1-an-1=6,…(3分)
所以a2k-1=a+6(k-1)=6k+a-6,a2k=5+6(k-1)=6k-1,k∈N*,
故${a_n}=\left\{\begin{array}{l}3n+a-3,n為奇數(shù),n∈{N^*}\\ 3n-1,n為偶數(shù),n∈{N^*}.\end{array}\right.$…(5分)
(2)當(dāng)n為奇數(shù)時,${S_n}=\frac{1}{6}(3n+a-2)(3n+3)-n$,
由Sn≤n(3n+1)得,$a≤\frac{{3{n^2}+3n+2}}{n+1}$恒成立,
令$f(n)=\frac{{3{n^2}+3n+2}}{n+1}$,則$f(n+1)-f(n)=\frac{{3{n^2}+9n+4}}{(n+2)(n+1)}>0$,
所以a≤f(1)=4.…(8分)
當(dāng)n為偶數(shù)時,${S_n}=\frac{1}{6}•3n(3n+a+1)-n$,
由Sn≤n(3n+1)得,a≤3(n+1)恒成立,
所以a≤9.
又a1=a>0,所以實數(shù)a的取值范圍是(0,4].…(10分)
(3)證明:當(dāng)a=2時,若n為奇數(shù),則an=3n-1,所以an=3n-1.
解法1:令等比數(shù)列{bn}的公比q=4m(m∈N*),則${b_n}={b_1}{q^{n-1}}=5×{4^{m(n-1)}}$.
設(shè)k=m(n-1),因為$1+4+{4^2}+…+{4^{k-1}}=\frac{{{4^k}-1}}{3}$,
所以5×4m(n-1)=5×[3(1+4+42+…+4k-1)+1],=3[5(1+4+42+…+4k-1)+2]-1,…(14分)
因為5(1+4+42+…+4k-1)+2為正整數(shù),
所以數(shù)列{bn}是數(shù)列{an}中包含的無窮等比數(shù)列,
因為公比q=4m(m∈N*)有無數(shù)個不同的取值,對應(yīng)著不同的等比數(shù)列,
故無窮等比數(shù)列{bn}有無數(shù)個.…(16分)
解法2:設(shè)${b_2}={a_{k_2}}=3{k_2}-1({k_2}≥3)$,所以公比$q=\frac{{3{k_2}-1}}{5}$.
因為等比數(shù)列{bn}的各項為整數(shù),所以q為整數(shù),
取${k_2}=5m+2(m∈{N^*})$,則q=3m+1,故${b_n}=5•{(3m+1)^{n-1}}$,
由$3{k_n}-1=5•{(3m+1)^{n-1}}$得,${k_n}=\frac{1}{3}[5{(3m+1)^{n-1}}+1](n∈{N^*})$,
而當(dāng)n≥2時,${k_n}-{k_{n-1}}=\frac{5}{3}[{(3m+1)^{n-1}}-{(3m+1)^{n-2}}]=5m{(3m+1)^{n-2}}$,
即${k_n}={k_{n-1}}+5m{(3m+1)^{n-2}}$,…(14分)
又因為k1=2,5m(3m+1)n-2都是正整數(shù),所以kn也都是正整數(shù),
所以數(shù)列{bn}是數(shù)列{an}中包含的無窮等比數(shù)列,
因為公比q=3m+1(m∈N*)有無數(shù)個不同的取值,對應(yīng)著不同的等比數(shù)列,
故無窮等比數(shù)列{bn}有無數(shù)個.…(16分)
點評 本題考查了構(gòu)造方法、等差數(shù)列與等比數(shù)列的通項公式及其求和公式,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [1,+∞) | C. | (-∞,1] | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com