【題目】如圖所示,已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點(diǎn)B(3,0),圓P過B且與圓A內(nèi)切,則圓心P的軌跡方程為_________

【答案】

【解析】

設(shè)動(dòng)圓圓心P,半徑為r,利用兩圓相切內(nèi)切,兩圓心距和兩半徑之間的關(guān)系列出PAPB的關(guān)系式,正好符合橢圓的定義,利用定義法求軌跡方程即可.

設(shè)動(dòng)圓圓心P(x,y),半徑為r,⊙A的圓心為A(-3,0),半徑為10,
又因?yàn)閯?dòng)圓過點(diǎn)B,所以r=PB,
若動(dòng)圓P與⊙A相內(nèi)切,則有PA=10-r=10-PB,即PA+PB=10
由③④得|PA+PB|=10>|AB|=6
故P點(diǎn)的軌跡為以A和B為焦點(diǎn)的橢圓,且a=5,c=3,所以b2=a2-c2=16
所以動(dòng)員圓心的方程為。
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02,…,495050個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取6個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第7行的第9列和第10列數(shù)字開始從左到右依次選取兩個(gè)數(shù)字,則選出的第4個(gè)個(gè)體的編號為(

附:第6行至第8行的隨機(jī)數(shù)表

2748 6198 7164 4148 7086 2888 8519 1620 7477

0111 1630 2404 2979 7991 9624 5125 3211 4919

7306 4916 7677 8733 9974 6732 2635 7900 3370

A.11B.24C.25D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)的和為數(shù)列滿足且對任意正整數(shù)都有成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式.

(2)證明數(shù)列為等差數(shù)列.

(3)令問是否存在正整數(shù)使得成等比數(shù)列?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+3x,其中a>0.

(1)當(dāng)a=1時(shí),求不等式f(x)>3x+2的解集;

(2)若不等式f(x)≤0的解集為{x|x≤﹣1},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面ABCD為直角梯形,,,為正三角形.

點(diǎn)M為棱AB上一點(diǎn),若平面SDM,,求實(shí)數(shù)的值;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1(a>b>0)的一個(gè)焦點(diǎn)是F(1,0),且離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)經(jīng)過點(diǎn)F的直線交橢圓CM,N兩點(diǎn),線段MN的垂直平分線交y軸于點(diǎn)P(0y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點(diǎn),且在兩坐標(biāo)軸上的截距相等,則此直線的方程為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了測量某塔的高度,某人在一條水平公路兩點(diǎn)進(jìn)行測量.在點(diǎn)測得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進(jìn)10米到點(diǎn),測得塔頂?shù)难鼋菫?/span>,則塔的高度為( )

A. 5米B. 10米C. 15米D. 20米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,M是線段AB上的動(dòng)點(diǎn).

證明:平面;

若點(diǎn)MAB中點(diǎn),求二面角的余弦值;

判斷點(diǎn)M到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案